Print Settings
 

BIO 182H: Stanford at Sea (BIO 323H, EARTHSYS 323, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 323H: Stanford at Sea (BIO 182H, EARTHSYS 323, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16

CEE 17SC: River and Region: The Columbia River and the Shaping of the Pacific Northwest (EARTHSYS 16SC, HISTORY 29SC, POLISCI 14SC)

This seminar will explore the crucial role of the Columbia River in the past, present, and future of the Pacific Northwest. Topics will include the lives and legacies of the indigenous peoples that Lewis and Clark encountered more than two centuries ago; the historic fisheries that attracted thousands of Chinese and, later, Scandinavian workers; the New Deal¿s epic dam-building initiatives beginning in the 1930s; the impact of the Manhattan Project¿s plutonium bomb development at Hanford Atomic Works in WWII; and the twenty-first-century server farms dotted across the Columbia Plateau. We plan to visit with local water managers, farmers, ranchers, loggers, Native American fishermen, and energy administrators, as well as elected officials and environmental activists, to examine the hydrologic, meteorologic, and geologic bases of the river¿s water and energy resources, and the practical, social, environmental, economic, and political issues surrounding their development in the Pacific Northwest region.The Columbia River and its watershed provide a revealing lens on a host of issues. A transnational, multi-state river with the largest residual populations of anadromous salmonids in the continental US, it is a major source of renewable hydroelectric power. (The Grand Coulee dam powerhouse is the largest-capacity hydropower facility in the US; nearly 50% of Oregon¿s electricity generation flows from hydropower; in Washington State it¿s nearly two-thirds, the highest in the nation.) The river provides a major bulk commodity transportation link from the interior West to the sea via an elaborate system of locks. It irrigates nearly 700,000 acres of sprawling wheat ranches and fruit farms in the federally administered Columbia Basin Project. We will look at all these issues with respect to rapid climate change, ecosystem impacts, economics, and public policy.We will begin with classroom briefings on campus, in preparation for the two-week field portion of the seminar. We plan to then travel widely throughout the Columbia basin, visiting water and energy facilities across the watershed, e.g., hydro, solar, wind, and natural gas power plants; dams and reservoirs with their powerhouses, fish passage facilities, navigation locks, and flood-mitigation systems; tribal organizations; irrigation projects; the Hanford Nuclear Reservation; and offices of regulatory agencies. We hope to meet with relevant policy experts and public officials, along with several of the stakeholders in the basin.Over the summer students will be responsible for assigned readings from several sources, including monographs, online materials, and recent news articles. During the trip, students will work in small groups to analyze and assess one aspect of the river¿s utilization, and the challenges to responsible management going forward. The seminar will culminate in presentations to an audience of Stanford alumni in Portland, Oregon.
Last offered: Summer 2023 | Units: 2

CHEM 31A: Chemical Principles I

31A is the first course in a two-quarter sequence designed to provide a robust foundation in key chemical principles for students with a basic background in high school chemistry, who have already placed into Math 19 or higher. The course engages students in group problem-solving activities throughout the class periods to deepen their ability to analyze and solve chemical problems. Students will also participate in a weekly laboratory activity that will immediately apply and expand upon classroom content. Labs and write-ups provide practice developing conceptual models that can explain qualitatively and quantitatively a wide range of chemical phenomena. The course will introduce a common language of dimensional analysis, stoichiometry, and molecular naming that enables students to write chemical reactions, quantify reaction yield, and calculate empirical and molecular formulas. Stoichiometry will be immediately reinforced through a specific study of gases and their properties. Students will also build a fundamental understanding of atomic and molecular structure by identifying interactions among nuclei, electrons, atoms and molecules. Through both lab and in-class exploration, students will learn to explain how these interactions determine the structures and properties of pure substances and mixtures using various bonding models including Lewis Dot, VSEPR, and Molecular Orbital Theory. Students will identify and quantitate the types and amounts of energy changes that accompany these interactions, phase changes, and chemical reactions, as they prepare to explore chemical dynamics in greater depth in 31B. Special emphasis will be placed on applying content and skills to real world applications such as estimating the carbon efficiency of fossil fuels, understanding hydrogen bonding and other interactions critical to DNA, and calculating the pressure exerted on a deep-sea diver. Prerequisites: Math 18 and Chem11 or placement into Chem31A with Autumn General Chemistry Placement test. All students who are interested in taking general chemistry at Stanford must take the General Chemistry Placement Test before the Autumn quarter begins, regardless of chemistry background, to enroll.
Terms: Aut, Sum | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 16SC: River and Region: The Columbia River and the Shaping of the Pacific Northwest (CEE 17SC, HISTORY 29SC, POLISCI 14SC)

This seminar will explore the crucial role of the Columbia River in the past, present, and future of the Pacific Northwest. Topics will include the lives and legacies of the indigenous peoples that Lewis and Clark encountered more than two centuries ago; the historic fisheries that attracted thousands of Chinese and, later, Scandinavian workers; the New Deal¿s epic dam-building initiatives beginning in the 1930s; the impact of the Manhattan Project¿s plutonium bomb development at Hanford Atomic Works in WWII; and the twenty-first-century server farms dotted across the Columbia Plateau. We plan to visit with local water managers, farmers, ranchers, loggers, Native American fishermen, and energy administrators, as well as elected officials and environmental activists, to examine the hydrologic, meteorologic, and geologic bases of the river¿s water and energy resources, and the practical, social, environmental, economic, and political issues surrounding their development in the Pacific Northwest region.The Columbia River and its watershed provide a revealing lens on a host of issues. A transnational, multi-state river with the largest residual populations of anadromous salmonids in the continental US, it is a major source of renewable hydroelectric power. (The Grand Coulee dam powerhouse is the largest-capacity hydropower facility in the US; nearly 50% of Oregon¿s electricity generation flows from hydropower; in Washington State it¿s nearly two-thirds, the highest in the nation.) The river provides a major bulk commodity transportation link from the interior West to the sea via an elaborate system of locks. It irrigates nearly 700,000 acres of sprawling wheat ranches and fruit farms in the federally administered Columbia Basin Project. We will look at all these issues with respect to rapid climate change, ecosystem impacts, economics, and public policy.We will begin with classroom briefings on campus, in preparation for the two-week field portion of the seminar. We plan to then travel widely throughout the Columbia basin, visiting water and energy facilities across the watershed, e.g., hydro, solar, wind, and natural gas power plants; dams and reservoirs with their powerhouses, fish passage facilities, navigation locks, and flood-mitigation systems; tribal organizations; irrigation projects; the Hanford Nuclear Reservation; and offices of regulatory agencies. We hope to meet with relevant policy experts and public officials, along with several of the stakeholders in the basin.Over the summer students will be responsible for assigned readings from several sources, including monographs, online materials, and recent news articles. During the trip, students will work in small groups to analyze and assess one aspect of the river¿s utilization, and the challenges to responsible management going forward. The seminar will culminate in presentations to an audience of Stanford alumni in Portland, Oregon.
Last offered: Summer 2023 | Units: 2

EARTHSYS 323: Stanford at Sea (BIO 182H, BIO 323H, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

ESS 323: Stanford at Sea (BIO 182H, BIO 323H, EARTHSYS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16

GLOBAL 112: Oceans and the Global Imaginary (GLOBAL 212, OCEANS 112, OCEANS 212)

This course brings together various social, climatic, and ecological perspectives to seek a better understanding of the relationships between people and the sea. Our oceans constitute some 70% of the surface area of our planet; they connect continents, countless islands, and form a universal link between geographically vast regions and culturally diverse peoples. Our oceans are critical to the health of our planet, and to humanity, and it is this interdependent relationship that forms the basis of this course.Taking a genuinely global viewpoint, we will explore the dynamic nature of peoples' interactions with their maritime landscape and seascape. The course will draw on a wide range of social science and natural science data and approaches to assess how we traversed and explored the seas; how the seas have been an enduring source of nutrition; and how they have come to garner immense social and cultural significance to peoples around the world. The course looks at the unique features of the Indian, Atlantic, and Pacific Oceans, using case studies from each, while drawing lines that connect these vast oceanic basins. Ultimately, the course emphasizes the challenges facing our oceans as humanity's impact reaches unprecedented levels and considers how `people and oceans in partnership' might help mitigate the damage climate change has wrought on our planet.
Terms: Aut | Units: 1
Instructors: ; Seetah, K. (PI)

GLOBAL 212: Oceans and the Global Imaginary (GLOBAL 112, OCEANS 112, OCEANS 212)

This course brings together various social, climatic, and ecological perspectives to seek a better understanding of the relationships between people and the sea. Our oceans constitute some 70% of the surface area of our planet; they connect continents, countless islands, and form a universal link between geographically vast regions and culturally diverse peoples. Our oceans are critical to the health of our planet, and to humanity, and it is this interdependent relationship that forms the basis of this course.Taking a genuinely global viewpoint, we will explore the dynamic nature of peoples' interactions with their maritime landscape and seascape. The course will draw on a wide range of social science and natural science data and approaches to assess how we traversed and explored the seas; how the seas have been an enduring source of nutrition; and how they have come to garner immense social and cultural significance to peoples around the world. The course looks at the unique features of the Indian, Atlantic, and Pacific Oceans, using case studies from each, while drawing lines that connect these vast oceanic basins. Ultimately, the course emphasizes the challenges facing our oceans as humanity's impact reaches unprecedented levels and considers how `people and oceans in partnership' might help mitigate the damage climate change has wrought on our planet.
Terms: Aut | Units: 1
Instructors: ; Seetah, K. (PI)

HISTORY 29SC: River and Region: The Columbia River and the Shaping of the Pacific Northwest (CEE 17SC, EARTHSYS 16SC, POLISCI 14SC)

This seminar will explore the crucial role of the Columbia River in the past, present, and future of the Pacific Northwest. Topics will include the lives and legacies of the indigenous peoples that Lewis and Clark encountered more than two centuries ago; the historic fisheries that attracted thousands of Chinese and, later, Scandinavian workers; the New Deal¿s epic dam-building initiatives beginning in the 1930s; the impact of the Manhattan Project¿s plutonium bomb development at Hanford Atomic Works in WWII; and the twenty-first-century server farms dotted across the Columbia Plateau. We plan to visit with local water managers, farmers, ranchers, loggers, Native American fishermen, and energy administrators, as well as elected officials and environmental activists, to examine the hydrologic, meteorologic, and geologic bases of the river¿s water and energy resources, and the practical, social, environmental, economic, and political issues surrounding their development in the Pacific Northwest region.The Columbia River and its watershed provide a revealing lens on a host of issues. A transnational, multi-state river with the largest residual populations of anadromous salmonids in the continental US, it is a major source of renewable hydroelectric power. (The Grand Coulee dam powerhouse is the largest-capacity hydropower facility in the US; nearly 50% of Oregon¿s electricity generation flows from hydropower; in Washington State it¿s nearly two-thirds, the highest in the nation.) The river provides a major bulk commodity transportation link from the interior West to the sea via an elaborate system of locks. It irrigates nearly 700,000 acres of sprawling wheat ranches and fruit farms in the federally administered Columbia Basin Project. We will look at all these issues with respect to rapid climate change, ecosystem impacts, economics, and public policy.We will begin with classroom briefings on campus, in preparation for the two-week field portion of the seminar. We plan to then travel widely throughout the Columbia basin, visiting water and energy facilities across the watershed, e.g., hydro, solar, wind, and natural gas power plants; dams and reservoirs with their powerhouses, fish passage facilities, navigation locks, and flood-mitigation systems; tribal organizations; irrigation projects; the Hanford Nuclear Reservation; and offices of regulatory agencies. We hope to meet with relevant policy experts and public officials, along with several of the stakeholders in the basin.Over the summer students will be responsible for assigned readings from several sources, including monographs, online materials, and recent news articles. During the trip, students will work in small groups to analyze and assess one aspect of the river¿s utilization, and the challenges to responsible management going forward. The seminar will culminate in presentations to an audience of Stanford alumni in Portland, Oregon.
Last offered: Summer 2023 | Units: 2

OCEANS 10SC: Discover Monterey Bay through Oceanography, Ecology, and Literature

Monterey Bay supports an amazing diversity of marine life, important fisheries, and coastal agriculture. There is much to explore here, from a submarine canyon that rivals the Grand Canyon in scope to Elkhorn Slough, California's second largest estuary. A day on the Bay can reveal a fleet of purse-seine vessels searching for squid, sport fishermen seeking salmon and halibut, and humpback whales breaching as they feed on anchovies ? all within a relatively small area. What are the oceanographic and biological processes that support these creatures and human endeavors? How do they vary in different parts of the Bay? How are these processes linked to the fog that dominates the coastal climate and is critical to local agriculture? We will address these questions through lectures, discussion, and field work using the restored Western Flyer ? the ship John Steinbeck and Ed Ricketts took to the Gulf of California in 1940, resulting in publication of Sea of Cortez. You will collect oceanographic and biological data at sea using a variety of research instruments, including remotely operated video platforms, echosounder (sonar), water-column profiler, and plankton-imaging microscope. These observations will be related to the processes and trophic webs in the bay, moving all the way from wind to whales. At Elkhorn Slough we will observe sea otters and birds from kayaks. We will analyze water and sediment samples for nutrients and other properties and compare our results to real-time data from moorings in the slough and bay. We will learn about agriculture, the largest economic driver in Monterey County, and its connections to Monterey Bay through fog, nutrient runoff into Elkhorn Slough, and seawater intrusion into critical aquifers. We will also dive into Monterey Bay's rich cultural and literary history in developing a holistic view that will reveal a dynamic ocean from new viewpoints and build teamwork skills that are essential to working at sea. Our base of operation will be Hopkins Marine Station in Pacific Grove. We will make several relevant field trips on land. On four days, we will use the Western Flyer as our at-sea classroom (all day trips--we will spend all nights on land). Three days of ship time will be devoted to studying spawning squid and feeding whales and carrying out an oceanographic transect across the Bay from kelp forest to canyon. An additional day will be devoted to collecting data for projects of your own design. We will spend three days at Elkhorn Slough and in the Pajaro Valley agricultural area. You will use the data collected (and analyzed!) and experiences formed during our explorations to create individual or team projects. Projects will be presented at a symposium on the second last day. The last day of SoCo will feature a final morning of reflection on the shore of Monterey Bay before you return to Stanford.
Terms: Sum | Units: 2

OCEANS 182H: Stanford at Sea (BIO 182H, BIO 323H, EARTHSYS 323, ESS 323, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

OCEANS 291H: Teaching of Stanford at Sea

Only open to graduate students who are teaching assistants for Stanford at Sea. Provides practical experience in teaching field oceanography and marine biology. Serving as an assistant in a lecture course (five weeks) is coupled with acting as a laboratory teaching assistant on board an oceanographic research vessel during a five-week research cruise with the Stanford at Sea course. Prerequisite: consent of instructor. Formerly BIOHOPK 291H.
Terms: Spr | Units: 10

OCEANS 323H: Stanford at Sea (BIO 182H, BIO 323H, EARTHSYS 323, ESS 323, OCEANS 182H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16

OSPISTAN 74: Dreaming of a Cosmopolitan Sea: The Mediterranean in History

This course addresses the relations and interconnectedness between the different Mediterranean cultures from the Early Modern period (16th century) to nowadays. We will analyse the ways in which historians and anthropologists have used the Mediterranean as a privileged terrain to rethink the communication, circulation and exchanges between the Christian and Muslim worlds, often represented as fundamentally antagonistic. Although violence is pervasive in the Middle Sea's history, we will see that it was not always religiously motivated. We will thus explore other forms of tension such as wars between empires aspiring for global dominion (Spain and the Ottoman Empire), privateering, the exploitation of captive labour force, slave trade and the wars of colonial conquest. A theatre of multiform conflicts, the Mediterranean was also a crossroads where economic, commercial and political interests intersected. We will thus examine the ways in which these interactions contributed to the formation of multi-religious states and favoured religious syncretism and linguistic and cultural hybridizations. We will finally investigate how nationalism and colonialism compartmentalized the Mediterranean space. Aside from scholarly works, our material will include literature and films. KU course # HIST 319
Terms: Aut | Units: 3

OSPOXFRD 86: From the hills to the sea

This course would focus on the Thames River, at least since Roman times arguably the most important waterway in Britain. The basis of the class would be an exploration of the Thames from different angles both scientific and historical. The science side of the course would consider the following topics: the geology/geographic setting that gave rise to the Thames; its hydrology including a history of its floods and droughts as well as climate change trends; aspects of the hydrodynamics of tides and the estuarine environment of the Thames; the effects on the Thames of human modification such as loss of wetlands associated with building of the Docklands in the 18th and 19th centuries; sea level rise and the Thames including the design basis of the Thames Tidal Barrier. The history side of the course would consider how the Thames has played a role in the history of Britain, e.g., as an inland transportation corridor, as a barrier between states, as the site of the signing of the Magna Carta, as the heart of the global trade enterprise that built the British Empire, as a challenge to important engineering feats in Victorian London, as a subject for landscape painters like Turner, and as a spur of public policies of environmental protection and restoration.
Terms: Aut | Units: 4-5 | UG Reqs: WAY-AQR

POLISCI 14SC: River and Region: The Columbia River and the Shaping of the Pacific Northwest (CEE 17SC, EARTHSYS 16SC, HISTORY 29SC)

This seminar will explore the crucial role of the Columbia River in the past, present, and future of the Pacific Northwest. Topics will include the lives and legacies of the indigenous peoples that Lewis and Clark encountered more than two centuries ago; the historic fisheries that attracted thousands of Chinese and, later, Scandinavian workers; the New Deal¿s epic dam-building initiatives beginning in the 1930s; the impact of the Manhattan Project¿s plutonium bomb development at Hanford Atomic Works in WWII; and the twenty-first-century server farms dotted across the Columbia Plateau. We plan to visit with local water managers, farmers, ranchers, loggers, Native American fishermen, and energy administrators, as well as elected officials and environmental activists, to examine the hydrologic, meteorologic, and geologic bases of the river¿s water and energy resources, and the practical, social, environmental, economic, and political issues surrounding their development in the Pacific Northwest region.The Columbia River and its watershed provide a revealing lens on a host of issues. A transnational, multi-state river with the largest residual populations of anadromous salmonids in the continental US, it is a major source of renewable hydroelectric power. (The Grand Coulee dam powerhouse is the largest-capacity hydropower facility in the US; nearly 50% of Oregon¿s electricity generation flows from hydropower; in Washington State it¿s nearly two-thirds, the highest in the nation.) The river provides a major bulk commodity transportation link from the interior West to the sea via an elaborate system of locks. It irrigates nearly 700,000 acres of sprawling wheat ranches and fruit farms in the federally administered Columbia Basin Project. We will look at all these issues with respect to rapid climate change, ecosystem impacts, economics, and public policy.We will begin with classroom briefings on campus, in preparation for the two-week field portion of the seminar. We plan to then travel widely throughout the Columbia basin, visiting water and energy facilities across the watershed, e.g., hydro, solar, wind, and natural gas power plants; dams and reservoirs with their powerhouses, fish passage facilities, navigation locks, and flood-mitigation systems; tribal organizations; irrigation projects; the Hanford Nuclear Reservation; and offices of regulatory agencies. We hope to meet with relevant policy experts and public officials, along with several of the stakeholders in the basin.Over the summer students will be responsible for assigned readings from several sources, including monographs, online materials, and recent news articles. During the trip, students will work in small groups to analyze and assess one aspect of the river¿s utilization, and the challenges to responsible management going forward. The seminar will culminate in presentations to an audience of Stanford alumni in Portland, Oregon.
Last offered: Summer 2023 | Units: 2
© Stanford University | Terms of Use | Copyright Complaints