Print Settings
 

BIOE 122: Biosecurity and Bioterrorism Response (EMED 122, PUBLPOL 122)

Overview of the most pressing biosecurity issues facing the world today. Guest lecturers have included former Secretary of State Condoleezza Rice, former Special Assistant on BioSecurity to Presidents Clinton and Bush Jr. Dr. Ken Bernard, Chief Medical Officer of the Homeland Security Department Dr. Alex Garza, eminent scientists, innovators and physicians in the field, and leaders of relevant technology companies. How well the US and global healthcare systems are prepared to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and the technology sectors are involved in biosecurity and pandemic or bioterrorism response and how they interface, the rise of synthetic biology with its promises and threats, global bio-surveillance, making the medical diagnosis, isolation, containment, hospital surge capacity, stockpiling and distribution of countermeasures, food and agriculture biosecurity, new promising technologies for detection of bio-threats and countermeasures. Open to medical, graduate, and undergraduate students. No prior background in biology necessary. 4 units for twice weekly attendance (Mon. and Wed.); additional 1 unit for writing a research paper for 5 units total maximum.
Terms: Win | Units: 4-5 | UG Reqs: GER: DB-NatSci, GER:EC-GlobalCom, WAY-SI
Instructors: ; Trounce, M. (PI)

BIOE 123: Biomedical System Prototyping Lab

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics.nnLearning goals:n1. Hands-on skills and experience with design, fabrication, integration, and characterization of practical electronic and mechanical hardware systems relevant to Bioengineeringn2. Practice using modern rapid prototyping and device equipment and techniques, including CAD, 3D printing, laser cutting, microcontrollers, design thinkingn3. Experience working as a team to build an end-to-end functional biomedical system (e.g., a fermenter)nnPrerequisites: BIOE 41 and Matlab recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 141B: Senior Capstone Design II

Lecture/Lab. Second course of two-quarter capstone sequence. Team based project introduces students to the process of designing new biological technologies to address societal needs. Emphasis is on implementing and testing the design from the first quarter with the at least one round of prototype iteration. Guest lectures and practical demonstrations are incorporated. Prerequisites: BIOE123 and BIOE44. This course is open only to seniors in the undergraduate Bioengineering program.nIMPORTANT NOTE: class meets in Shriram 112.
Terms: Win | Units: 4

BIOE 158: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (CHEMENG 160, MATSCI 158)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of ¿soft matter¿ are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Prerequisites: ENG 50 or equivalent.
Terms: Win | Units: 4

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Individual research by arrangement with out-of-department instructors. Credit for 191X is restricted to declared Bioengineering majors pursuing honors and requires department approval. See http://bioengineering.stanford.edu/education/undergraduate.html for additional information. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 196: INTERACTIVE MEDIA AND GAMES (BIOPHYS 196)

Interactive media and games increasingly pervade and shape our society. In addition to their dominant roles in entertainment, video games play growing roles in education, arts, and science. This seminar series brings together a diverse set of experts to provide interdisciplinary perspectives on these media regarding their history, technologies, scholarly research, industry, artistic value, and potential future.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: ; Riedel-Kruse, I. (PI)

BIOE 217: Translational Bioinformatics (BIOMEDIN 217, CS 275)

Computational methods for the translation of biomedical data into diagnostic, prognostic, and therapeutic applications in medicine. Topics: multi-scale omics data generation and analysis, utility and limitations of public biomedical resources, machine learning and data mining, issues and opportunities in drug discovery, and mobile/digital health solutions. Case studies and course project. Prerequisites: programming ability at the level of CS 106A and familiarity with biology and statistics.
Terms: Win | Units: 4

BIOE 220: Introduction to Imaging and Image-based Human Anatomy (RAD 220)

Focus on learning the fundamentals of each imaging modality including X-ray Imaging, Ultrasound, CT, and MRI, to learn normal human anatomy and how it appears on medical images, to learn the relative strengths of the modalities, and to answer, "What am I looking at?" Course website: http://bioe220.stanford.edu
Terms: Win | Units: 3

BIOE 221: Physics and Engineering of Radionuclide-based Medical Imaging (RAD 221)

Physics, instrumentation, and algorithms for radionuclide-based medical imaging, with a focus on positron emission tomography (PET) and single photon emission computed tomography (SPECT). Topics include basic physics of photon emission from the body and detection, sensors, readout and data acquisition electronics, system design, strategies for tomographic image reconstruction, system calibration and data correction algorithms, methods of image quantification, and image quality assessment, and current developments in the field. Prerequisites: A year of university-level mathematics and physics.
Terms: Win | Units: 3
Instructors: ; Levin, C. (PI); Pratx, G. (PI)

BIOE 224: Probes and Applications for Multi-modality Molecular Imaging of Living Subjects (RAD 224)

Focuses on molecular contrast agents (a.k.a. "probes") that interrogate and target specific cellular and molecular disease mechanisms. Covers the ideal characteristics of molecular probes and how to optimize their design for use as effective imaging reagents that enables readout of specific steps in biological pathways and reveal the nature of disease through noninvasive imaging assays. Prerequisites: none.
Terms: Win | Units: 4 | Repeatable 2 times (up to 8 units total)

BIOE 227: Functional MRI Methods

(Same as RAD 227, BIOPHYS 227) Basics of functional magnetic resonance neuroimaging, including data acquisition, analysis, and experimental design. Journal club sections. Cognitive neuroscience and clinical applications. Prerequisites: basic physics, mathematics; neuroscience recommended.
Terms: Win | Units: 3
Instructors: ; Glover, G. (PI)

BIOE 242: LAW, TECHNOLOGY, AND LIBERTY (ENGR 243)

New technologies from gene editing to networked computing have already transformed our economic and social structures and are increasingly changing what it means to be human. What role has law played in regulating and shaping these technologies? And what role can and should it play in the future? This seminar will consider these and related questions, focusing on new forms of networked production, the new landscape of security and scarcity, and the meaning of human nature and ecology in an era of rapid technological change. Readings will be drawn from a range of disciplines, including science and engineering, political economy, and law. The course will feature several guest speakers. There are no formal prerequisites in either engineering or law, but students should be committed to pursuing novel questions in an interdisciplinary context. The enrollment goal is to balance the class composition between law and non-law students. Elements used in grading: Attendance, Class Participation, Written Assignments. CONSENT APPLICATION: To apply for this course, students must complete and submit a Consent Application Form available on the SLS website (Click Courses at the bottom of the homepage and then click Consent of Instructor Forms). See Consent Application Form for instructions and submission deadline. This course is cross-listed with the School of Engineering (TBA). May be repeat for credit
Terms: Win | Units: 2 | Repeatable 2 times (up to 2 units total)
Instructors: ; Endy, D. (PI)

BIOE 281: Biomechanics of Movement (ME 281)

Experimental techniques to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation.
Terms: Win | Units: 3

BIOE 285: Computational Modeling in the Cardiovascular System (CME 285, ME 285)

This course introduces computational modeling methods for cardiovascular blood flow and physiology. Topics in this course include analytical and computational methods for solutions of flow in deformable vessels, one-dimensional equations of blood flow, cardiovascular anatomy, lumped parameter models, vascular trees, scaling laws, biomechanics of the circulatory system, and 3D patient specific modeling with finite elements; course will provide an overview of the diagnosis and treatment of adult and congenital cardiovascular diseases and review recent research in the literature in a journal club format. Students will use SimVascular software to do clinically-oriented projects in patient specific blood flow simulations.
Terms: Win | Units: 3
Instructors: ; Marsden, A. (PI)

BIOE 300A: Molecular and Cellular Bioengineering

The molecular and cellular bases of life from an engineering perspective. Analysis and engineering of biomolecular structure and dynamics, enzyme function, molecular interactions, metabolic pathways, signal transduction, and cellular mechanics. Quantitative primary literature. Prerequisites: CHEM 171 and BIO 41 or equivalents; MATLAB or an equivalent programming language.
Terms: Win | Units: 3

BIOE 300B: Engineering Concepts Applied to Physiology

This course focuses on engineering approaches to quantifying, modeling and controlling the physiology and pathophysiology of complex systems, from the level of individual cells to tissue, organ and multi-organ systems.
Terms: Aut, Win | Units: 3

BIOE 301B: Clinical Needs and Technology

The goal of this course is to introduce bioengineering students to medical technology as it is used in current clinical practice, in the modern tertiary care, subspecialty hospital. Half of the course will be devoted to labs, in which small groups of students participate in hands-on experiences using advanced clinical technology in areas such as medical imaging, robotic surgery, and minimally invasive diagnosis and treatment. The second half of the course brings pairs of students and clinical faculty mentors together for a more in-depth, focused exposure to clinical care in one specific area. Final grades will be based on attendance, and presentations made by each pair of student to the class about their mentoring experience.
Terms: Win | Units: 2

BIOE 301D: Microfluidic Device Laboratory (GENE 207)

This course exposes students to the design, fabrication, and testing of microfluidic devices for biological applications through combination of lectures and hands-on lab sessions. In teams of two, students will produce a working prototype devices designed to address specific design challenges within the biological community using photolithography, soft lithography, and imaging techniques.
Terms: Win | Units: 3-4

BIOE 326A: In Vivo MR: SpinPhysics and Spectroscopy (RAD 226A)

Collections of independent identical nuclear spins are well described by the classical vector model of magnetic resonance imaging, however, interaction among spins, as occur in many in vivo processes, require a more complete description. This course develops the basic physics and engineering principles of these interactions with emphasis on current research questions and clinical spectroscopy applications. Prerequisite: EE396b; familiarity with MRI, linear algebra recommended.
Terms: Win | Units: 3 | Repeatable 3 times (up to 9 units total)
Instructors: ; Spielman, D. (PI)

BIOE 337: Organismic Biophysics and Living Soft-matter

Integrated physical biology; from molecules to organisms. Tree of life, diversity of life forms. Multi-scale/hierarchical systems in biophysics, Hierarchical self-organization. Basic theory of squishy materials, colloidal physics. Phase transitions in living soft-matter. Experimental techniques in soft-matter physics. Active fluid models for living matter. Design of self-assembling and self-organizing, biomimetic supramolecular systems.
Terms: Win | Units: 3

BIOE 374A: Biodesign Innovation: Needs Finding and Concept Creation (ME 368A, MED 272A)

In this two-quarter course series (BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4

BIOE 375A: Biodesign Innovation: Needs Finding and Concept Creation

Enrollment limited to SCPD students. Two quarter sequence. Inventing new medical devices and instrumentation, including: methods of validating medical needs; techniques for analyzing intellectual property; basics of regulatory (FDA) and reimbursement planning; brainstorming and early prototyping. Guest lecturers and practical demonstrations.
Terms: Win | Units: 2

BIOE 377: Startup Garage: Testing and Launch

STRAMGT 356/BIOE 376 teams that concluded at the end of fall quarter that their preliminary product or service and business model suggest a path to viability, may continue with STRAMGT 366/BIOE 377 in winter quarter. Teams develop more elaborate versions of their product/service and business model, perform a series of experiments to test key hypotheses about their product and business model, and prepare and present an investor pitch for a seed round of financing to a panel of seasoned investors and entrepreneurs.
Terms: Win | Units: 4

BIOE 392: Directed Investigation

For Bioengineering graduate students. Previous work in 391 may be required for background; faculty sponsor required. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit
Instructors: ; Alizadeh, A. (PI); Altman, R. (PI); Andriacchi, T. (PI); Annes, J. (PI); Appel, E. (PI); Baker, J. (PI); Bammer, R. (PI); Bao, Z. (PI); Barron, A. (PI); Batzoglou, S. (PI); Bertozzi, C. (PI); Bintu, L. (PI); Boahen, K. (PI); Bryant, Z. (PI); Butte, A. (PI); Camarillo, D. (PI); Carter, D. (PI); Chang, H. (PI); Chaudhuri, O. (PI); Chen, X. (PI); Cheng, C. (PI); Chichilnisky, E. (PI); Cochran, J. (PI); Contag, C. (PI); Covert, M. (PI); Dabiri, J. (PI); Dahl, J. (PI); Deisseroth, K. (PI); Delp, S. (PI); Demirci, U. (PI); Dionne, J. (PI); Endy, D. (PI); Engleman, E. (PI); Etkin, A. (PI); Fahrig, R. (PI); Feinstein, J. (PI); Feng, L. (PI); Fire, A. (PI); Fordyce, P. (PI); Gambhir, S. (PI); Ganguli, S. (PI); Garcia, C. (PI); Glover, G. (PI); Gold, G. (PI); Goodman, S. (PI); Graves, E. (PI); Greenleaf, W. (PI); Hargreaves, B. (PI); Heilshorn, S. (PI); Herschlag, D. (PI); Huang, K. (PI); Huang, P. (PI); Ingelsson, E. (PI); Jarosz, D. (PI); Jonikas, M. (PI); Khuri-Yakub, B. (PI); Kim, P. (PI); Kovacs, G. (PI); Krasnow, M. (PI); Krummel, T. (PI); Kuhl, E. (PI); Kuo, C. (PI); Lee, J. (PI); Levenston, M. (PI); Levin, C. (PI); Lin, M. (PI); Liphardt, J. (PI); Longaker, M. (PI); Magnus, D. (PI); Marsden, A. (PI); Monje-Deisseroth, M. (PI); Montgomery, S. (PI); Moore, T. (PI); Nishimura, D. (PI); Nolan, G. (PI); Nuyujukian, P. (PI); O'Brien, L. (PI); Okamura, A. (PI); Pauly, J. (PI); Pauly, K. (PI); Pelc, N. (PI); Plevritis, S. (PI); Prakash, M. (PI); Pruitt, B. (PI); Qi, S. (PI); Quake, S. (PI); Rando, T. (PI); Raymond, J. (PI); Red-Horse, K. (PI); Reijo Pera, R. (PI); Relman, D. (PI); Riedel-Kruse, I. (PI); Rose, J. (PI); Sanger, T. (PI); Sapolsky, R. (PI); Sattely, E. (PI); Schnitzer, M. (PI); Scott, M. (PI); Shenoy, K. (PI); Smolke, C. (PI); Soh, H. (PI); Soltesz, I. (PI); Spielman, D. (PI); Swartz, J. (PI); Taylor, C. (PI); Wang, B. (PI); Wang, S. (PI); Weissman, I. (PI); Wernig, M. (PI); Woo, J. (PI); Wu, J. (PI); Wu, S. (PI); Xing, L. (PI); Yang, F. (PI); Yang, Y. (PI); Yock, P. (PI); Zeineh, M. (PI); Zenios, S. (PI); Jones, D. (GP)

BIOE 393: Bioengineering Departmental Research Colloquium

Bioengineering department labs at Stanford present recent research projects and results. Guest lecturers. Topics include applications of engineering to biology, medicine, biotechnology, and medical technology, including biodesign and devices, molecular and cellular engineering, regenerative medicine and tissue engineering, biomedical imaging, and biomedical computation. Aut, Win, Spr (Lin, Riedel-Kruse, Barron)
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

BIOE 459: Frontiers in Interdisciplinary Biosciences (BIO 459, BIOC 459, CHEM 459, CHEMENG 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Robertson, C. (PI)

BIOE 802: TGR Dissertation

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Alizadeh, A. (PI); Altman, R. (PI); Andriacchi, T. (PI); Annes, J. (PI); Appel, E. (PI); Baker, J. (PI); Bammer, R. (PI); Bao, Z. (PI); Barron, A. (PI); Batzoglou, S. (PI); Bertozzi, C. (PI); Bintu, L. (PI); Boahen, K. (PI); Bryant, Z. (PI); Butte, A. (PI); Camarillo, D. (PI); Carter, D. (PI); Chang, C. (PI); Chang, H. (PI); Chaudhuri, O. (PI); Cheng, C. (PI); Chichilnisky, E. (PI); Chiu, W. (PI); Cochran, J. (PI); Contag, C. (PI); Covert, M. (PI); Dabiri, J. (PI); Dahl, J. (PI); Deisseroth, K. (PI); Delp, S. (PI); Demirci, U. (PI); Endy, D. (PI); Engleman, E. (PI); Etkin, A. (PI); Fahrig, R. (PI); Feinstein, J. (PI); Feng, L. (PI); Fire, A. (PI); Fordyce, P. (PI); Gambhir, S. (PI); Ganguli, S. (PI); Garcia, C. (PI); Glenn, J. (PI); Glover, G. (PI); Gold, G. (PI); Goodman, S. (PI); Graves, E. (PI); Greenleaf, W. (PI); Hargreaves, B. (PI); Heilshorn, S. (PI); Huang, K. (PI); Huang, P. (PI); Ingelsson, E. (PI); Jarosz, D. (PI); Khuri-Yakub, B. (PI); Kim, P. (PI); Kovacs, G. (PI); Krummel, T. (PI); Kuhl, E. (PI); Lee, J. (PI); Levenston, M. (PI); Levin, C. (PI); Lin, M. (PI); Liphardt, J. (PI); Longaker, M. (PI); Magnus, D. (PI); Marsden, A. (PI); Montgomery, S. (PI); Moore, T. (PI); Nishimura, D. (PI); Nolan, G. (PI); Nuyujukian, P. (PI); Okamura, A. (PI); Pauly, J. (PI); Pauly, K. (PI); Pelc, N. (PI); Plevritis, S. (PI); Prakash, M. (PI); Pruitt, B. (PI); Qi, S. (PI); Quake, S. (PI); Raymond, J. (PI); Red-Horse, K. (PI); Reijo Pera, R. (PI); Relman, D. (PI); Riedel-Kruse, I. (PI); Rose, J. (PI); Sanger, T. (PI); Sapolsky, R. (PI); Sattely, E. (PI); Schnitzer, M. (PI); Scott, M. (PI); Shenoy, K. (PI); Smolke, C. (PI); Soh, H. (PI); Spielman, D. (PI); Swartz, J. (PI); Taylor, C. (PI); Theriot, J. (PI); Wang, B. (PI); Wang, S. (PI); Weissman, I. (PI); Wernig, M. (PI); Woo, J. (PI); Wu, J. (PI); Wu, S. (PI); Xing, L. (PI); Yang, F. (PI); Yang, Y. (PI); Yock, P. (PI); Zarins, C. (PI); Zenios, S. (PI); Jones, D. (GP)
© Stanford University | Terms of Use | Copyright Complaints