Print Settings
 

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

MATSCI 153: Nanostructure and Characterization

The structure of materials at the nanoscale is in most cases the same crystalline form as the natural phase. Structures of materials such as semiconductors, ceramics, metals, and nanotubes; classification of these materials according to the principles of crystallography. Primary methods of structural characterization, X-ray diffraction, and electron microscopy; their applications to study such nanostructures.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: ; Kempen, P. (PI)

MATSCI 157: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators and metals and applications to semiconductor devices. Time-dependent perturbation theory and interaction of light with materials with applications to laser technology.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: ; Lindenberg, A. (PI)

MATSCI 161: Nanocharacterization Laboratory (MATSCI 171)

Students use optical microscopy, x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy and other techniques to characterize recently discovered perovskite semiconductors that can be used to make highly efficient solar cells. This course fulfills the Writing in the Major Requirement for MSE undergrads. Instruction on writing, statistics, generating effective plots with curve fits, using databases to find information and giving oral scientific presentations is given. Instruction on characterization techniques is provided, but it is expected that the students will have already taken a course like MATSCI 153 that covers the fundamentals of the techniques. The emphasis on this course is on doing nanocharacterization experiments and writing up the results. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: ; McGehee, M. (PI)

MATSCI 162: X-Ray Diffraction Laboratory (MATSCI 172, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Vailionis, A. (PI)

MATSCI 165: Nanoscale Materials Physics Computation Laboratory (MATSCI 175)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: ; Reed, E. (PI)

MATSCI 171: Nanocharacterization Laboratory (MATSCI 161)

Students use optical microscopy, x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy and other techniques to characterize recently discovered perovskite semiconductors that can be used to make highly efficient solar cells. This course fulfills the Writing in the Major Requirement for MSE undergrads. Instruction on writing, statistics, generating effective plots with curve fits, using databases to find information and giving oral scientific presentations is given. Instruction on characterization techniques is provided, but it is expected that the students will have already taken a course like MATSCI 153 that covers the fundamentals of the techniques. The emphasis on this course is on doing nanocharacterization experiments and writing up the results. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Win | Units: 3-4
Instructors: ; McGehee, M. (PI)

MATSCI 172: X-Ray Diffraction Laboratory (MATSCI 162, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units.
Terms: Win | Units: 3-4
Instructors: ; Vailionis, A. (PI)

MATSCI 175: Nanoscale Materials Physics Computation Laboratory (MATSCI 165)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units.
Terms: Win | Units: 3-4
Instructors: ; Reed, E. (PI)

MATSCI 194: Thermodynamics and Phase Equilibria (MATSCI 204)

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids. Undergraduates register for 194 for 4 units; graduates register for 204 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Salleo, A. (PI)

MATSCI 195: Waves and Diffraction in Solids (MATSCI 205, PHOTON 205)

The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell's equations. Diffracted intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: 193/203 or consent of instructor. Undergraduates register for 195 for 4 units; graduates register for 205 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Clemens, B. (PI)

MATSCI 196: Defects in Crystalline Solids (MATSCI 206)

Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Chueh, W. (PI); Wen, Y. (GP)

MATSCI 204: Thermodynamics and Phase Equilibria (MATSCI 194)

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids. Undergraduates register for 194 for 4 units; graduates register for 204 for 3 units.
Terms: Win | Units: 3-4
Instructors: ; Salleo, A. (PI)

MATSCI 205: Waves and Diffraction in Solids (MATSCI 195, PHOTON 205)

The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell's equations. Diffracted intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: 193/203 or consent of instructor. Undergraduates register for 195 for 4 units; graduates register for 205 for 3 units.
Terms: Win | Units: 3-4
Instructors: ; Clemens, B. (PI)

MATSCI 206: Defects in Crystalline Solids (MATSCI 196)

Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Terms: Win | Units: 3-4
Instructors: ; Chueh, W. (PI); Wen, Y. (GP)

MATSCI 230: Materials Science Colloquium

May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

MATSCI 299: Practical Training

Educational opportunities in high-technology research and development labs in industry. Qualified graduate students engage in internship work and integrate that work into their academic program. Following the internship, students complete a research report outlining their work activity, problems investigated, key results, and any follow-on projects they expect to perform. Student is responsible for arranging own employment. See department student services manager before enrolling.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

MATSCI 320: Nanocharacterization of Materials

Current methods of directly examining the microstructure of materials. Topics: optical microscopy, scanning electron and focused ion beam microscopy, field ion microscopy, transmission electron microscopy, scanning probe microscopy, and microanalytical surface science methods. Emphasis is on the electron-optical techniques. Recommended: 193/203.
Terms: Win | Units: 3
Instructors: ; Sinclair, R. (PI)

MATSCI 382: Bio-chips, Imaging and Nanomedicine (EE 225, SBIO 225)

The course covers state-of-the-art and emerging bio-sensors, bio-chips, imaging modalities, and nano-therapies which will be studied in the context of human physiology including the nervous system, circulatory system and immune system. Medical diagnostics will be divided into bio-chips (in-vitro diagnostics) and medical and molecular imaging (in-vivo imaging). In-depth discussion on cancer and cardiovascular diseases and the role of diagnostics and nano-therapies.
Terms: Win | Units: 3

MATSCI 400: Participation in Materials Science Teaching

May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints