Print Settings
 

EE 23N: Imaging: From the Atom to the Universe

Preference to freshmen. Forms of imaging including human and animal vision systems, atomic force microscope, microscope, digital camera, holography and three-dimensional imaging, telescope, synthetic aperture radar imaging, nuclear magnetic imaging, sonar and gravitational wave imaging, and the Hubble Space telescope. Physical principles and exposure to real imaging devices and systems.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Hesselink, L. (PI)

EE 65: Modern Physics for Engineers

This course introduces the core ideas of modern physics that enable applications ranging from solar energy and efficient lighting to the modern electronic and optical devices and nanotechnologies that sense, process, store, communicate and display all our information. Though the ideas have broad impact, the course is widely accessible to engineering and science students with only basic linear algebra and calculus through simple ordinary differential equations as mathematics background. Topics include the quantum mechanics of electrons and photons (Schrödinger's equation, atoms, electrons, energy levels and energy bands; absorption and emission of photons; quantum confinement in nanostructures), the statistical mechanics of particles (entropy, the Boltzmann factor, thermal distributions), the thermodynamics of light (thermal radiation, limits to light concentration, spontaneous and stimulated emission), and the physics of information (Maxwell¿s demon, reversibility, entropy and noise in physics and information theory). Pre-requisite: Physics 41. Pre- or co-requisite: Math 53 or CME 102.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-EngrAppSci, WAY-SMA
Instructors: ; Miller, D. (PI); Qiu, B. (TA)

EE 101B: Circuits II

Continuation of EE101A. Introduction to circuit design for modern electronic systems. Modeling and analysis of analog gain stages, frequency response, feedback. Filtering and analog¿to¿digital conversion. Fundamentals of circuit simulation. Prerequisites: EE101A, EE102A. Recommended: CME102.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EE 102B: Signal Processing and Linear Systems II

Continuation of EE 102A. Concepts and tools for continuous- and discrete-time signal and system analysis with applications in communications, signal processing and control. Analog and digital modulation and demodulation. Sampling, reconstruction, decimation and interpolation. Finite impulse response filter design. Discrete Fourier transforms, applications in convolution and spectral analysis. Laplace transforms, applications in circuits and feedback control. Z transforms, applications in infinite impulse response filter design. Prerequisite: EE 102A.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

EE 109: Digital Systems Design Lab

The design of integrated digital systems encompassing both customized software and hardware. Software/hardware design tradeoffs. Algorithm design for pipelining and parallelism. System latency and throughput tradeoffs. FPGA optimization techniques. Integration with external systems and smart devices. Firmware configuration and embedded system considerations. Enrollment limited to 25; preference to graduating seniors. Prerequisites: 108B, and CS 106B or X.
Terms: Spr | Units: 4

EE 116: Semiconductor Device Physics

The fundamental operation of semiconductor devices and overview of applications. The physical principles of semiconductors, both silicon and compound materials; operating principles and device equations for junction devices (diodes, bipolar transistor, photo-detectors). Introduction to quantum effects and band theory of solids. Recommended corequisites: EE 65 and EE 101B. Non-EE majors are encouraged to take ENGR 40 before EE 116.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Lu, C. (PI); Pop, E. (PI)

EE 178: Probabilistic Systems Analysis

Introduction to probability and statistics and their role in modeling and analyzing real world phenomena. Events, sample space, and probability. Discrete random variables, probability mass functions, independence and conditional probability, expectation and conditional expectation. Continuous random variables, probability density functions, independence and expectation, derived densities. Transforms, moments, sums of independent random variables. Simple random processes. Limit theorems. Introduction to statistics: significance, estimation and detection. Prerequisites: basic calculus.
Terms: Aut, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

EE 179: Analog and Digital Communication Systems

This course covers the fundamental principles underlying the analysis, design and optimization of analog and digital communication systems. Design examples will be taken from the most prevalent communication systems today: cell phones, Wifi, radio and TV broadcasting, satellites, and computer networks. Analysis techniques based on Fourier transforms and energy/power spectral density will be developed. Mathematical models for random variables and random (noise) signals will be presented, which are used to characterize filtering and modulation of random noise. These techniques will then be used to design analog (AM and FM) and digital (PSK and FSK) communication systems and determine their performance over channels with noise and interference. Prerequisite: 102A. Not offered AY 14-15, and students are encouraged to enroll in EE 107 instead.
Terms: Spr | Units: 3
Instructors: ; Pauly, J. (PI)

EE 190: Special Studies or Projects in Electrical Engineering

Independent work under the direction of a faculty member. Individual or team activities involve lab experimentation, design of devices or systems, or directed reading. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Allison, D. (PI); Arbabian, A. (PI); Bambos, N. (PI); Boahen, K. (PI); Boneh, D. (PI); Bowden, A. (PI); Boyd, S. (PI); Bube, R. (PI); Cioffi, J. (PI); DaRosa, A. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Emami-Naeini, A. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Giovangrandi, L. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lee, T. (PI); Leeson, D. (PI); Levin, C. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); Manoharan, H. (PI); McCluskey, E. (PI); McKeown, N. (PI); Melen, R. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Napel, S. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Prabhakar, B. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Siegel, M. (PI); Smith, J. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thompson, N. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tyler, G. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Wenstrand, J. (PI); Wetzstein, G. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 191: Special Studies and Reports in Electrical Engineering

Independent work under the direction of a faculty member given for a letter grade only. If a letter grade given on the basis of required written report or examination is not appropriate, enroll in 190. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Allison, D. (PI); Arbabian, A. (PI); Bambos, N. (PI); Boahen, K. (PI); Boneh, D. (PI); Bowden, A. (PI); Boyd, S. (PI); Bube, R. (PI); Carpenter, D. (PI); Cioffi, J. (PI); DaRosa, A. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Emami-Naeini, A. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Giovangrandi, L. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Huang, K. (PI); Inan, U. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lauben, D. (PI); Lee, T. (PI); Leeson, D. (PI); Levin, C. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); McCluskey, E. (PI); McKeown, N. (PI); Melen, R. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Moslehi, M. (PI); Murmann, B. (PI); Napel, S. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Prabhakar, B. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Smith, J. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thompson, N. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tyler, G. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Wenstrand, J. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 191A: Special Studies and Reports in Electrical Engineering

EE191A is part of the Accelerated Calculus for Engineers program. Independent work under the direction of a faculty member given for a letter grade only. EE 191A counts as a Math one unit seminar course: it is this unit that constitutes the ACE program.
Terms: Aut, Win, Spr | Units: 1

EE 191W: Special Studies and Reports in Electrical Engineering (WIM)

WIM-version of EE 191. For EE students using special studiesn(e.g., honors project, independent research project) to satisfy thenwriting-in-major requirement. A written report that has gone through revision with an advisor is required. An advisor from the Writing Center is recommended.
Terms: Aut, Win, Spr, Sum | Units: 3-10

EE 207: Neuromorphics: Brains in Silicon (BIOE 313)

(Formerly EE 304) Neuromorphic systems run perceptual, cognitive and motor tasks in real-time on a network of highly interconnected nonlinear units. To maximize density and minimize energy, these units--like the brain's neurons--are heterogeneous and stochastic. The first half of the course covers learning algorithms that automatically synthesize network configurations to perform a desired computation on a given heterogeneous neural substrate. The second half of the course surveys system-on-a-chip architectures that efficiently realize highly interconnected networks and mixed analog-digital circuit designs that implement area and energy-efficient nonlinear units. Prerequisites: EE102A is required.
Terms: Spr | Units: 3

EE 213: Digital MOS Integrated Circuits

Looks a little more deeply at how digital circuits operate, what makes a gate digital, and how to "cheat" to improve performance or power. To aid this analysis we create a number of different models for MOS transistors and choose the simplest one that can explain our the circuit's operation, using both hand and computer analysis. We explore static, dynamic, pulse-mode, and current mode logic, and show how they are are used in SRAM design. Topics include sizing for min delay, noise and noise margins, power dissipation. The class uses memory design (SRAM) as a motivating example. DRAM and EEPROM design issues are also covered. Formerly EE 313. Prerequisites: EE 101B, EE 108. Recommended: EE 271.
Terms: Spr | Units: 3

EE 236C: Lasers

Atomic systems, spontaneous emission, stimulated emission, amplification. Three- and four-level systems, rate equations, pumping schemes. Laser principles, conditions for steady-state oscillation. Transverse and longitudinal mode control and tuning. Exemplary laser systems: gas (HeNe), solid state (Nd:YAG, Ti:sapphire) and semiconductors. Elements of laser dynamics and noise. Formerly EE231. Prerequisites: EE 236B and familiarity with modern physics and semiconductor physics. Recommended: EE 216 and EE 223 (either may be taken concurrently).
Terms: Spr | Units: 3
Instructors: ; Heinz, T. (PI); Barre, E. (TA)

EE 254: Advanced Topics in Power Electronics

In this course, we will study the practical issues related to the practical design of power electronic converters. We will also explore the trade-offs involved in selecting among the different circuits used to convert ac to dc, dc to ac and back to dc over a wide range of power levels suitable for different applications. In Advanced Topics in Power Electronic, as a multidisciplinary field, we will discuss power electronics circuits, extraction of transfer functions in Continuous and discontinuous conduction mode, voltage and current control of power converters, design of input/output filters to meet Electro Magnetic Interference specifications, layout of power electronics circuits and put this knowledge in a very practical context. Prerequisites: EE 153/253.
Terms: Spr | Units: 3

EE 261: The Fourier Transform and Its Applications

The Fourier transform as a tool for solving physical problems. Fourier series, the Fourier transform of continuous and discrete signals and its properties. The Dirac delta, distributions, and generalized transforms. Convolutions and correlations and applications; probability distributions, sampling theory, filters, and analysis of linear systems. The discrete Fourier transform and the FFT algorithm. Multidimensional Fourier transform and use in imaging. Further applications to optics, crystallography. Emphasis is on relating the theoretical principles to solving practical engineering and science problems. Prerequisites: Math through ODEs, basic linear algebra, Comfort with sums and discrete signals, Fourier series at the level of 102A
Terms: Aut, Spr, Sum | Units: 3

EE 267: Virtual Reality

OpenGL, real-time rendering, 3D display systems, display optics & electronics, IMUs and sensors, tracking, haptics, rendering pipeline, multimodal human perception and depth perception, stereo rendering, presence. Emphasis on VR technology. Hands-on programming assignments. The 3-unit version requires a final programming assignment in which you create your own virtual environment. The 4-unit version requires a final course project and written report in lieu of the final assignment. Prerequisites: Strong programming skills, EE 103 or equivalent. Helpful: basic computer graphics / OpenGL.
Terms: Spr | Units: 3-4

EE 273: Digital Systems Engineering

Electrical issues in the design of high-performance digital systems, including signaling, timing, synchronization, noise, and power distribution. High-speed signaling methods; noise in digital systems, its effect on signaling, and methods for noise reduction; timing conventions; timing noise (skew and jitter), its effect on systems, and methods for mitigating timing noise; synchronization issues and synchronizer design; clock and power distribution problems and techniques; impact of electrical issues on system architecture and design. Prerequisites: EE101A and EE108A. Recommended: EE114/214A.
Terms: Spr | Units: 3

EE 278: Introduction to Statistical Signal Processing

Review of basic probability and random variables. Random vectors and processes; convergence and limit theorems; IID, independent increment, Markov, and Gaussian random processes; stationary random processes; autocorrelation and power spectral density; mean square error estimation, detection, and linear estimation. Formerly EE 278B. Prerequisites: EE178 and linear systems and Fourier transforms at the level of EE102A,B or EE261.
Terms: Aut, Spr, Sum | Units: 3

EE 282: Computer Systems Architecture

Course focuses on how to build modern computing systems, namely notebooks, smartphones, and data centers, covering primarily their hardware architecture and certain system software aspects. For each system class, we cover the system architecture, processor technology, advanced memory hierarchy and I/O organization, power and energy management, and reliability. We will also cover topics such as interactions with system software, virtualization, solid state storage, and security. The programming assignments allow students to explore performance/energy tradeoffs when using heterogeneous hardware resources on smartphone devices. Prerequisite: EE108B. Recommended: CS 140.
Terms: Spr | Units: 3

EE 290A: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, EE MS and PhD students who have received a Satisfactory ("S") grade in EE290A; for 290C, EE PhD degree candidacy and an "S" grade in EE 290B; for 290D, EE PhD degree candidacy, an "S" grade in EE 290C and instructor consent.
Terms: Aut, Win, Spr, Sum | Units: 1

EE 290B: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, EE MS and PhD students who have received a Satisfactory ("S") grade in EE290A; for 290C, EE PhD degree candidacy and an "S" grade in EE 290B; for 290D, EE PhD degree candidacy, an "S" grade in EE 290C and instructor consent.
Terms: Aut, Win, Spr, Sum | Units: 1

EE 290C: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, EE MS and PhD students who have received a Satisfactory ("S") grade in EE290A; for 290C, EE PhD degree candidacy and an "S" grade in EE 290B; for 290D, EE PhD degree candidacy, an "S" grade in EE 290C and instructor consent.
Terms: Aut, Win, Spr, Sum | Units: 1

EE 290D: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, EE MS and PhD students who have received a Satisfactory ("S") grade in EE290A; for 290C, EE PhD degree candidacy and an "S" grade in EE 290B; for 290D, EE PhD degree candidacy, an "S" grade in EE 290C and instructor consent.
Terms: Aut, Win, Spr, Sum | Units: 1

EE 292E: Image Systems Engineering

Seminar. For engineering students interested in camera and display engineering, computer vision, and computational imaging. Speakers include Stanford faculty and research scientists as well as industry professionals, mostly from consumer electronics companies.
Terms: Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

EE 292I: Insanely Great Products: How do they get built?

Great products emerge from a sometimes conflict-laden process of collaboration between different functions within companies. This Seminar seeks to demystify this process via case-studies of successful products and companies. Engineering management and businesspeople will share their experiences in discussion with students. Previous companies profiled: Apple, Intel, Facebook, and Genentech -- to name a few. Previous guests include: Jon Rubinstein (NeXT, Apple, Palm), Diane Greene (VMware), and Ted Hoff (Intel). Pre-requisites: None
Terms: Spr | Units: 1
Instructors: ; Obershaw, D. (PI)

EE 292T: SmartGrids and Advanced Power Systems Seminar (CEE 272T)

A series of seminar and lectures focused on power engineering. Renowned researchers from universities and national labs will deliver bi-weekly seminars on the state of the art of power system engineering. Seminar topics may include: power system analysis and simulation, control and stability, new market mechanisms, computation challenges and solutions, detection and estimation, and the role of communications in the grid. The instructors will cover relevant background materials in the in-between weeks. The seminars are planned to continue throughout the next academic year, so the course may be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable 2 times (up to 4 units total)
Instructors: ; Rajagopal, R. (PI)

EE 300: Master's Thesis and Thesis Research

Independent work under the direction of a department faculty. Written thesis required for final letter grade. The continuing grade 'N' is given in quarters prior to thesis submission. See 390 if a letter grade is not appropriate. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Allison, D. (PI); Bambos, N. (PI); Boahen, K. (PI); Boneh, D. (PI); Boyd, S. (PI); Bube, R. (PI); Cioffi, J. (PI); Cover, T. (PI); Cox, D. (PI); DaRosa, A. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Emami-Naeini, A. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Kahn, J. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lee, T. (PI); Leeson, D. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); Manoharan, H. (PI); McCluskey, E. (PI); McKeown, N. (PI); Melen, R. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Napel, S. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Prabhakar, B. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Siegel, M. (PI); Smith, J. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tyler, G. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Wenstrand, J. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 303: Autonomous Implantable Systems

Integrating electronics with sensing, stimulation, and locomotion capabilities into the body will allow us to restore or enhance physiological functions. In order to be able to insert these electronics into the body, energy source is a major obstacle. This course focuses on the analysis and design of wirelessly powered catheter-deliverable electronics. Emphases will be on the interaction between human and electromagnetic fields in order to transfer power to the embedded electronics via electromagnetic fields, power harvesting circuitry, electrical-tissue interface, and sensing and actuating frontend designs. Prerequisites: EE 252 or equivalent.
Terms: Spr | Units: 3
Instructors: ; Poon, A. (PI); Hsu, S. (TA)

EE 310: SystemX: Ubiquitous Sensing, Computing and Communication Seminar

This is a seminar course with invited speakers. Sponsored by Stanford's SystemX Alliance, the talks will cover emerging topics in contemporary hardware/software systems design. Special focus will be given to the key building blocks of sensors, processing elements and wired/wireless communications, as well as their foundations in semiconductor technology, SoC construction, and physical assembly as informed by the SystemX Focus Areas. The seminar will draw upon distinguished engineering speakers from both industry and academia who are involved at all levels of the technology stack and the applications that are now becoming possible. May be repeat for credit
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Bahr, R. (PI)

EE 311: Advanced Integrated Circuits Technology

What are the practical and fundamental limits to the evolution of the technology of modern MOS devices and interconnects? How are modern devices and circuits fabricated and what future changes are likely? Advanced techniques and models of MOS devices and back-end (interconnect and contact) processing. What are future device structures and materials to maintain progress in integrated electronics? MOS front-end and back-end process integration. Prerequisites: EE 216 or equivalent. Recommended: EE 212.
Terms: Spr | Units: 3

EE 314A: RF Integrated Circuit Design

Design of RF integrated circuits for communications systems, primarily in CMOS. Topics: the design of matching networks and low-noise amplifiers at RF, mixers, modulators, and demodulators; review of classical control concepts necessary for oscillator design including PLLs and PLL-based frequency synthesizers. Design of low phase noise oscillators. Design of high-efficiency (e.g., class E, F) RF power amplifiers, coupling networks. Behavior and modeling of passive and active components at RF. Narrowband and broadband amplifiers; noise and distortion measures and mitigation methods. Overview of transceiver architectures. Prerequisite: EE214B.
Terms: Spr | Units: 3

EE 320: Nanoelectronics

This course covers the device physics and operation principles of nanoelectric devices, with a focus on devices for energy-efficient computation. Topics covered include devices based on new nanomaterials such as carbon nanotubes, semiconductor nanowires, and 2D layered materials such as graphene; non-FET based devices such as nanoelectromechanical (NEM) relay, single electron transistors (SET) and resonant tunneling diodes (RTD); as well as FET-based devices such as tunnel FET. Devices targeted for both logic and memory applications are covered. Prerequisites: Undergraduate device physics, EE222, EE216, EE316. Recommended courses: EE223, EE228, EE311.
Terms: Spr | Units: 3

EE 327: Properties of Semiconductor Materials

Modern semiconductor devices and integrated circuits are based on unique energy band, carrier transport, and optical properties of semiconductor materials. How to choose these properties for operation of semiconductor devices. Emphasis is on quantum mechanical foundations of the properties of solids, energy bandgap engineering, semi-classical transport theory, semi-conductor statistics, carrier scattering, electro-magneto transport effects, high field ballistic transport, Boltzmann transport equation, quantum mechanical transitions, optical absorption, and radiative and non-radiative recombination that are the foundations of modern transistors and optoelectronic devices. Prerequisites: EE216 or equivalent.
Terms: Spr | Units: 3
Instructors: ; Harris, J. (PI)

EE 340: Optical Micro- and Nano-Cavities

Optical micro- and nano-cavities and their device applications. Types of optical cavities (microdisks, microspheres, photonic crystal cavities, plasmonic cavities), and their electromagnetic properties, design, and fabrication techniques. Cavity quantum electrodynamics: strong and weak-coupling regime, Purcell factor, spontaneous emission control. Applications of optical cavities, including low-threshold lasers, optical modulators, quantum information processing devices, and bio-chemical sensors. Prerequisites: Advanced undergraduate or basic graduate level knowledge of electromagnetics, quantum.
Terms: Spr | Units: 3

EE 349: Advanced Topics in Nano-Optics and Plasmonics

Electromagnetic phenomena at the nanoscale. Dipolar interactions between emitters and nanostructures, weak and strong coupling, surface plasmon polaritons and localized plasmons, electromagnetic field enhancements, and near-field coupling between metallic nanostructures. Numerical tools will be taught and used to simulate nano-optical phenomena. Prerequisite: EE 242 or equivalent.
Terms: Spr | Units: 3
Instructors: ; Fan, J. (PI); McKenna, T. (TA)

EE 364A: Convex Optimization I (CME 364A, CS 334A)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.
Terms: Spr, Sum | Units: 3

EE 369B: Medical Imaging Systems II

Imaging internal structures within the body using non-ionizing radiation studied from a systems viewpoint. Modalities include ultrasound and magnetic resonance. Analysis of ultrasonic systems including diffraction and noise. Analysis of magnetic resonance systems including physics, Fourier properties of image formation, and noise. Prerequisite: EE 261
Terms: Spr | Units: 3

EE 376D: Wireless Information Theory

Information theory forms the basis for the design of all modern day communication systems. The original theory was primarily point-to-point, studying how fast information can flow across an isolated noisy communication channel. Until recently, there has been only limited success in extending the theory to a network of interacting nodes. Progress has been made in the past decade driven by engineering interest in wireless networks. The course provides a unified overview of this recent progress made in information theory of wireless networks. Starting with an overview of the capacity of fading and multiple-antenna wireless channels, we aim to answer questions such as: What is the optimal way for users to cooperate and exchange information in a wireless network? How much benefit can optimal cooperation provide over traditional communication architectures? How can cooperation help to deal with interference between multiple wireless transmissions? Formerly EE361. Prerequisites: EE376A
Terms: Win, Spr | Units: 3
Instructors: ; Ozgur, A. (PI)

EE 378A: Statistical Signal Processing

Basic concepts of statistical decision theory; Bayes decision theory; HMMs and their state estimation (Forward--backward), Kalman as special case, approximate state estimation (particle filtering, Extended Kalman Filter), unknown parameters; Inference under logarithmic loss, mutual information as a fundamental measure of statistical relevance, properties of mutual information: data processing, chain rules. Directed information. Prediction under logarithmic loss; Context Tree Weighting algorithm; Sequential decision making in general: prediction under general loss functions, causal estimation, estimation of directed information. Non-sequential inference via sequential probability assignments. Universal denoising; Denoising from a decision theoretic perspective: nonparametric function estimation, wavelet shrinkage, density estimation; Estimation of mutual information on large alphabets with applications such as boosting the Chow-Liu algorithm. Estimation of the total variation distance, estimate the fundamental limit is easier than to achieve the fundamental limit; Peetre¿s K-functional and bias analysis: bias correction using jackknife, bootstrap, and Taylor series; Nonparametric functional estimation. Prerequisites: Familiarity with probability theory and linear algebra at the undergraduate level.
Terms: Spr | Units: 3

EE 380: Colloquium on Computer Systems

Live presentations of current research in the design, implementation, analysis, and applications of computer systems. Topics range over a wide range and are different every quarter. Topics may include fundamental science, mathematics, cryptography, device physics, integrated circuits, computer architecture, programming, programming languages, optimization, applications, simulation, graphics, social implications, venture capital, patent and copyright law, networks, computer security, and other topics of related to computer systems. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

EE 382A: Parallel Processors Beyond Multicore Processing

Formerly EE392Q. The current parallel computing research emphasizes multi-cores, but there are alterna-tive array processors with significant potential. This hands-on course focuses on SIMD (Single-Instruction, Multiple-Data) massively parallel processors. Topics: Flynn's Taxonomy, parallel architectures, Kestrel architecture and simulator, principles of SIMD programming, parallel sorting with sorting networks, string comparison with dynamic programming (edit distance, Smith-Waterman), arbitrary-precision operations with fixed-point numbers, reductions, vector and matrix multiplication, image processing algo-rithms, asynchronous algorithms on SIMD ("SIMD Phase Programming Model"), Man-delbrot set, analysis of parallel performance.
Terms: Spr | Units: 3
Instructors: ; Di Blas, A. (PI); Jin, O. (TA)

EE 384B: Multimedia Communication over the Internet

Applications and requirements. Traffic generation and characterization: voice encoding (G.711, G.729, G.723); image and video compression (JPEG, H.261, MPEG-2, H.263, H.264), TCP data traffic. Quality impairments and measures. Networking technologies: LAN technologies; home broadband services (ADSL, cable modems, PONs); and wireless LANs (802.11). Network protocols for multimedia applications: resource reservation (ST2+, RSVP); differentiated services (DiffServ); and real-time transport protocol (RTP, RTCP). Audio-video-data conferencing standards: Internet architecture (SDP, SAP, SIP); ITU recommendations (H.320, H.323 and T.120); and real-time streaming protocol (RTSP). Emphasis will be placed on advances in network infrastructure and new services (VoIP, IPTV, Peer-to-peer communications, etc.) Prerequisite: 284 or CS 144. Recommended: 384A.
Terms: Spr | Units: 3
Instructors: ; Tobagi, F. (PI)

EE 384E: Networked Wireless Systems

Design and implementation of wireless networks and mobile systems. The course will commence with a short retrospective of wireless communication and initially touch on some of the fundamental physical layer properties of various wireless communication technologies. The focus will then shift to design of media access control and routing layers for various wireless systems. The course will also examine adaptations necessary at transport and higher layers to cope with node mobility and error-prone nature of the wireless medium. Finally, it will conclude with a brief overview of other related issues including emerging wireless/mobile applications. Prerequisites: EE 284
Terms: Spr | Units: 3

EE 384S: Performance Engineering of Computer Systems & Networks

Modeling and control methodologies for high-performance network engineering, including: Markov chains and stochastic modeling, queueing networks and congestion management, dynamic programming and task/processor scheduling, network dimensioning and optimization, and simulation methods. Applications for design of high-performance architectures for wireline/wireless networks and the Internet, including: traffic modeling, admission and congestion control, quality of service support, power control in wireless networks, packet scheduling in switches, video streaming over wireless links, and virus/worm propagation dynamics and countermeasures. Enrollment limited to 30. Prerequisites: basic networking technologies and probability.
Terms: Spr | Units: 3
Instructors: ; Bambos, N. (PI)

EE 385A: Robust and Testable Systems Seminar

Student/faculty discussions of research problems in the design of reliable digital systems. Areas: fault-tolerant systems, design for testability, production testing, and system reliability. Emphasis is on student presentations and Ph.D. thesis research. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 1-4 | Repeatable for credit
Instructors: ; Mitra, S. (PI)

EE 390: Special Studies or Projects in Electrical Engineering

Independent work under the direction of a faculty member. Individual or team activities may involve lab experimentation, design of devices or systems, or directed reading. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Allison, D. (PI); Arbabian, A. (PI); Bambos, N. (PI); Bayati, M. (PI); Boahen, K. (PI); Boneh, D. (PI); Bosi, M. (PI); Bowden, A. (PI); Boyd, S. (PI); Bravman, J. (PI); Bube, R. (PI); Byer, R. (PI); Cheriton, D. (PI); Cioffi, J. (PI); Cover, T. (PI); Cox, D. (PI); DaRosa, A. (PI); Dai, H. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Elschot, S. (PI); Emami-Naeini, A. (PI); Enge, P. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Giovangrandi, L. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Helms, C. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Johari, R. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lee, T. (PI); Leeson, D. (PI); Levin, C. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); Manoharan, H. (PI); McCluskey, E. (PI); McKeown, N. (PI); Melen, R. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Napel, S. (PI); Narasimha, M. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Ozgur, A. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Popelka, G. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Siegel, M. (PI); Smith, J. (PI); Soh, H. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thompson, N. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tse, D. (PI); Tyler, G. (PI); Ullman, J. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Wenstrand, J. (PI); Wetzstein, G. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); de la Zerda, A. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 391: Special Studies and Reports in Electrical Engineering

Independent work under the direction of a faculty member; written report or written examination required. Letter grade given on the basis of the report; if not appropriate, student should enroll in 390. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Abel, J. (PI); Allison, D. (PI); Arbabian, A. (PI); Bambos, N. (PI); Bayati, M. (PI); Bent, S. (PI); Boahen, K. (PI); Boneh, D. (PI); Bosi, M. (PI); Bowden, A. (PI); Boyd, S. (PI); Bravman, J. (PI); Brongersma, M. (PI); Bube, R. (PI); Byer, R. (PI); Cheriton, D. (PI); Cioffi, J. (PI); Cover, T. (PI); Cox, D. (PI); Cui, Y. (PI); DaRosa, A. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Elschot, S. (PI); Emami-Naeini, A. (PI); Enge, P. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Fejer, M. (PI); Flynn, M. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Giovangrandi, L. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Hellman, M. (PI); Helms, C. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lauben, D. (PI); Lee, T. (PI); Leeson, D. (PI); Levin, C. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); Manoharan, H. (PI); McCluskey, E. (PI); McKeown, N. (PI); Melen, R. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Napel, S. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Ozgur, A. (PI); Palanker, D. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Popelka, G. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Rajagopal, R. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Siegel, M. (PI); Smith, J. (PI); Soh, H. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thompson, N. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tse, D. (PI); Tyler, G. (PI); Ullman, J. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Wenstrand, J. (PI); Wetzstein, G. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Yang, D. (PI); Zebker, H. (PI); de la Zerda, A. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 392AA: Advanced Digital Transmission

This course will develop insights into fundamentals and design of state-of-the-art physical-layer transmission systems. Specific attention will be paid to transmission in non-ideal environments with limited spectra and spatial interference. A theory of parallel channels is used to develop multi-carrier methods, vector coding, and generalized decision-feedback approaches. Students will be expected to design and analyze performance of systems operating close to fundamental limits for a variety of practical channels, wireline or wireless. Prerequisites: EE379 or equivalent; understanding of probability, random processes, digital signal processing (including basic matrix and nmatlab skills).
Terms: Spr | Units: 3

EE 392B: Industrial Internet of Things

The seminar will feature guest lectures from the industry to discuss the state of the affairs in the Industrial Internet of Things (IoT) with emphasis on existing and new Data Science, analytics, and Big Data applications. The class will address several verticals. One of them is electrical power industry, which is undergoing transition to renewables and distributed generation. Another one is aerospace industry including airlines and equipment vendors. Other verticals are oil and gas, data centers, and semiconductor manufacturing.
Terms: Spr | Units: 1 | Repeatable for credit

EE 392I: Seminar on Trends in Computing and Communications

Lectures series and invited talks on current trends in computing and communications, and ongoing initiatives for research and open innovation. This year's focus on evolving cloud computing architectures and their impact on the enterprise; big data trends and rise of the third platform; software as a service; wireless and cellular network architectures; mobility and mobile data proliferation; open mobile platforms (e.g. Android); multi-homed mobile networking, associated data communication and mobile resource trade-offs, and system implementation in smartphones and Android devices.
Terms: Spr | Units: 1
Instructors: ; Singh, J. (PI)

EE 400: Thesis and Thesis Research

Limited to candidates for the degree of Engineer or Ph.D.May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Allison, D. (PI); Arbabian, A. (PI); Bambos, N. (PI); Boahen, K. (PI); Boneh, D. (PI); Boyd, S. (PI); Bravman, J. (PI); Bube, R. (PI); Byer, R. (PI); Cheriton, D. (PI); Cioffi, J. (PI); Cover, T. (PI); Cox, D. (PI); DaRosa, A. (PI); Dai, H. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Emami-Naeini, A. (PI); Enge, P. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Fejer, M. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Helms, C. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lee, T. (PI); Leeson, D. (PI); Levin, C. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); Manoharan, H. (PI); McCluskey, E. (PI); McConnell, M. (PI); McKeown, N. (PI); Melen, R. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Napel, S. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Ozgur, A. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pauly, K. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Smith, J. (PI); Soh, H. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tse, D. (PI); Tyler, G. (PI); Ullman, J. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Wenstrand, J. (PI); Wetzstein, G. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 402T: Entrepreneurship in Asian High-Tech Industries (EALC 402T)

Distinctive patterns and challenges of entrepreneurship in Asia; update of business and technology issues in the creation and growth of start-up companies in major Asian economies. Distinguished speakers from industry, government, and academia. Course may be repeated for credit.
Terms: Spr | Units: 1 | Repeatable for credit
Instructors: ; Dasher, R. (PI)

EE 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Allison, D. (PI); Arbabian, A. (PI); Bahai, A. (PI); Bambos, N. (PI); Boahen, K. (PI); Boneh, D. (PI); Bosi, M. (PI); Boyd, S. (PI); Bube, R. (PI); Byer, R. (PI); Cioffi, J. (PI); Cover, T. (PI); Cox, D. (PI); Cui, Y. (PI); DaRosa, A. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Emami-Naeini, A. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, J. (PI); Gill, J. (PI); Girod, B. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gray, R. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lee, T. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Miller, D. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Palanker, D. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Popelka, G. (PI); Prabhakar, B. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Siegel, M. (PI); Soh, H. (PI); Solgaard, O. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tyler, G. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wang, S. (PI); Weissman, T. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)

EE 802: TGR Dissertation

May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Allison, D. (PI); Arbabian, A. (PI); Bahai, A. (PI); Bambos, N. (PI); Bent, S. (PI); Boahen, K. (PI); Boneh, D. (PI); Bosi, M. (PI); Bowden, A. (PI); Boyd, S. (PI); Bravman, J. (PI); Bube, R. (PI); Byer, R. (PI); Cheriton, D. (PI); Chichilnisky, E. (PI); Cioffi, J. (PI); Cover, T. (PI); Cox, D. (PI); DaRosa, A. (PI); Dally, B. (PI); Dasher, R. (PI); Dill, D. (PI); Duchi, J. (PI); Dutton, R. (PI); El Gamal, A. (PI); Emami-Naeini, A. (PI); Enge, P. (PI); Engler, D. (PI); Fan, J. (PI); Fan, S. (PI); Franklin, G. (PI); Fraser-Smith, A. (PI); Garcia-Molina, H. (PI); Gibbons, F. (PI); Gibbons, J. (PI); Gill, J. (PI); Girod, B. (PI); Glover, G. (PI); Goldsmith, A. (PI); Goodman, J. (PI); Gorinevsky, D. (PI); Gray, R. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Harris, J. (PI); Harris, S. (PI); Helms, C. (PI); Hennessy, J. (PI); Hesselink, L. (PI); Horowitz, M. (PI); Howe, R. (PI); Inan, U. (PI); Kahn, J. (PI); Katti, S. (PI); Kazovsky, L. (PI); Khuri-Yakub, B. (PI); Kino, G. (PI); Kovacs, G. (PI); Kozyrakis, C. (PI); Lall, S. (PI); Lam, M. (PI); Lee, T. (PI); Leeson, D. (PI); Levin, C. (PI); Levis, P. (PI); Levoy, M. (PI); Linscott, I. (PI); Manoharan, H. (PI); McCluskey, E. (PI); McConnell, M. (PI); McKeown, N. (PI); McNab, J. (PI); Meng, T. (PI); Miller, D. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Murmann, B. (PI); Napel, S. (PI); Ng, A. (PI); Nishi, Y. (PI); Nishimura, D. (PI); Olukotun, O. (PI); Osgood, B. (PI); Ozgur, A. (PI); Paulraj, A. (PI); Pauly, J. (PI); Pauly, K. (PI); Pease, R. (PI); Pelc, N. (PI); Pianetta, P. (PI); Plummer, J. (PI); Poon, A. (PI); Pop, E. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Rajagopal, R. (PI); Rivas-Davila, J. (PI); Rosenblum, M. (PI); Saraswat, K. (PI); Shen, Z. (PI); Shenoy, K. (PI); Siegel, M. (PI); Smith, J. (PI); Soh, H. (PI); Solgaard, O. (PI); Spielman, D. (PI); Stinson, J. (PI); Thrun, S. (PI); Tobagi, F. (PI); Tyler, G. (PI); Ullman, J. (PI); Van Roy, B. (PI); Vuckovic, J. (PI); Wandell, B. (PI); Wang, S. (PI); Weissman, T. (PI); Widom, J. (PI); Widrow, B. (PI); Wong, H. (PI); Wong, S. (PI); Wooley, B. (PI); Wootters, M. (PI); Xing, L. (PI); Yamamoto, Y. (PI); Zebker, H. (PI); George, S. (GP); Gillespie, J. (GP); Moreau, D. (GP)
© Stanford University | Terms of Use | Copyright Complaints