Print Settings
 

EARTHSYS 46Q: Environmental Impact of Energy Systems: What are the Risks? (GES 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
Terms: Win | Units: 3

EARTHSYS 56Q: Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays (EESS 56Q)

Preference to sophomores. Recent changes in the California current, using Monterey Bay as an example. Current literature introduces principles of oceanography. Visits from researchers from MBARI, Hopkins, and UCSC. Optional field trip to MBARI and Monterey Bay.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: ; Dunbar, R. (PI)

EARTHSYS 57Q: Climate Change from the Past to the Future (EESS 57Q)

Preference to sophomores. Numeric models to predict how climate responds to increase of greenhouse gases. Paleoclimate during times in Earth's history when greenhouse gas concentrations were elevated with respect to current concentrations. Predicted scenarios of climate models and how these models compare to known hyperthermal events in Earth history. Interactions and feedbacks among biosphere, hydrosphere, atmosphere, and lithosphere. Topics include long- and short-term carbon cycle, coupled biogeochemical cycles affected by and controlling climate change, and how the biosphere responds to climate change. Possible remediation strategies.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Chamberlain, P. (PI)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EARTHSYS 104: The Water Course (GEOPHYS 104)

The pathway that water takes from rainfall to the tap using student home towns as an example. How the geological environment controls the quantity and quality of water; taste tests of water from around the world. Current U.S. and world water supply issues.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: ; Knight, R. (PI)

EARTHSYS 105A: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105A)

Formerly 96A - Jasper Ridge Docent Training. First of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course.
Terms: Win | Units: 4

EARTHSYS 111: Biology and Global Change (BIO 117, EESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 112: Human Society and Environmental Change (EESS 112, HISTORY 103D)

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1
Terms: Win | Units: 4 | UG Reqs: WAY-SI

EARTHSYS 115T: Island Biogeography of Tasmania Prefield Seminar

Islands are natural laboratories for studying a wide variety of subjects including biological diversity, cultural diversity, epidemiology, geology, climate change, conservation, and evolution. This field seminar focuses on Island Biogeography in one of the most extraordinary and well-preserved ecosystems in the world: Tasmania. Tasmanian d­­evils, wombats, and wallabies ¿ the names conjure up images of an exotic faraway place, a place to appreciate the incredibly diversity of life and how such striking forms of life came to be. This course will prepare students for their overseas seminar in Tasmania. Students will give presentations on specific aspects of the Tasmania and will lay the groundwork for the presentations they will be giving during the field seminar where access to the internet and to other scholarly resources will be quite limited. Additional topics to be addressed include: logistics, health and safety, group dynamics, cultural sensitivity, history, and politics. We will also address post-field issues such as reverse culture shock, and ways to consolidate and build up abroad experiences after students return to campus.
Terms: Win | Units: 3
Instructors: ; Siegel, R. (PI)

EARTHSYS 121: Building a Sustainable Society: New Approaches for Integrating Human and Environmental Priorities

"Building a Sustainable Society: New approaches to integrating human and environmental priorities" draws on economics, natural resources management, sociology and leadership science to examine theoretical frameworks and diverse case studies that illustrate the main drivers, core features and challenges of building a sustainable society where human beings and the natural environment thrive. Themes include collaborative consumption, the sharing economy, worker-owned cooperatives, community-corporate partnerships, cradle to cradle design, social entrepreneurship, impact investing, "beyond GDP" measures, and 21st century leadership. Critical perspectives, lectures and student-led discussions guide analysis of innovations within public, private and civic sectors globally, with emphasis on Latin America.
Terms: Win, Spr | Units: 3
Instructors: ; Novy, J. (PI)

EARTHSYS 135: Podcasting the Anthropocene (EARTHSYS 235)

Identification and interview of Stanford researchers to be featured in an audio podcast. Exploration of interviewing techniques, audio storytelling, audio editing, and podcasting as a newly emerging media platform. Individual and group projects. Group workshops focused on preparation, review, and critiques of podcasts.
Terms: Win | Units: 2 | Repeatable 3 times (up to 6 units total)

EARTHSYS 141: Remote Sensing of the Oceans (EARTHSYS 241, EESS 141, EESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR
Instructors: ; Arrigo, K. (PI)

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, EESS 162, EESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4
Instructors: ; Lambin, E. (PI)

EARTHSYS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (EARTHSYS 246A, EESS 146A, EESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3
Instructors: ; Thomas, L. (PI)

EARTHSYS 158: Geomicrobiology (EARTHSYS 258, EESS 158, EESS 258)

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Terms: Win | Units: 3
Instructors: ; Francis, C. (PI)

EARTHSYS 160: Sustainable Cities (URBANST 164)

Service-learning course that exposes students to sustainability concepts and urban planning as a tool for determining sustainable outcomes in the Bay Area. Focus will be on the relationship of land use and transportation planning to housing and employment patterns, mobility, public health, and social equity. Topics will include government initiatives to counteract urban sprawl and promote smart growth and livability, political realities of organizing and building coalitions around sustainability goals, and increasing opportunities for low-income and communities of color to achieve sustainability outcomes. Students will participate in team-based projects in collaboration with local community partners and take part in significant off-site fieldwork. Prerequisites: consent of the instructor.
Terms: Win | Units: 4-5 | UG Reqs: WAY-EDP, WAY-SI | Repeatable 20 times (up to 100 units total)
Instructors: ; Chan, D. (PI)

EARTHSYS 164: Introduction to Physical Oceanography (CEE 164, CEE 262D, EESS 148)

The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: ; Fong, D. (PI)

EARTHSYS 168: The Evolving Sphere of Food Security (EARTHSYS 268)

This seminar delves into a comprehensive new volume on food security written by an all-Stanford team of nineteen faculty and researchers. It explores the interconnections of food security with energy, water, climate, health, and national security, and examines the role of food and agricultural policies and their consequences in countries at different stages of development. Led by the editor of the book, with participation of several of the authors from across many disciplines. Prerequisite: ECON 106. Admission is by application.
Terms: Win | Units: 2
Instructors: ; Naylor, R. (PI)

EARTHSYS 170: Environmental Geochemistry (GES 170, GES 270)

Solid, aqueous, and gaseous phases comprising the environment, their natural compositional variations, and chemical interactions. Contrast between natural sources of hazardous elements and compounds and types and sources of anthropogenic contaminants and pollutants. Chemical and physical processes of weathering and soil formation. Chemical factors that affect the stability of solids and aqueous species under earth surface conditions. The release, mobility, and fate of contaminants in natural waters and the roles that water and dissolved substances play in the physical behavior of rocks and soils. The impact of contaminants and design of remediation strategies. Case studies. Prerequisite: 90 or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: ; Brown, G. (PI)

EARTHSYS 172: Australian Ecosystems: Human Dimensions and Environmental Dynamics (ANTHRO 170, ANTHRO 270)

This cross-disciplinary course surveys the history and prehistory of human ecological dynamics in Australia, drawing on geology, climatology, archaeology, geography, ecology and anthropology to understand the mutual dynamic relationships between the continent and its inhabitants. Topics include anthropogenic fire and fire ecology, animal extinctions, aridity and climate variability, colonization and spread of Homo sapiens, invasive species interactions, changes in human subsistence and mobility throughout the Pleistocene and Holocene as read through the archaeological record, the totemic geography and social organization of Aboriginal people at the time of European contact, the ecological and geographical aspects of the "Dreamtime", and contemporary issues of policy relative to Aboriginal land tenure and management.
Terms: Win | Units: 3 | UG Reqs: WAY-SI
Instructors: ; Bird, R. (PI); Bird, D. (GP)

EARTHSYS 176: Peninsula Open Space Trust Practicum: Community-Based Research for Open Space Management

In this course, students will work directly on real-world open space management projects in partnership with the Peninsula Open Space Trust (POST), a non-profit organization dedicated to the conservation and preservation of open space, farmland and parkland in and around Silicon Valley. The unique patchwork of urban-to-rural land uses, property ownership, and ecosystems in our region poses numerous challenges and opportunities for regional conservation and environmental stewardship. Students will address a particular challenge through a faculty-mentored research project that will help achieve POST's property management and planning objectives. By focusing on a project driven by POST¿s needs and carried out through engagement with the community, and with thorough reflection, study, and discussion about the roles of scientific, economic, and policy research in local-scale environmental decision-making, students will explore the underlying challenges and complexities of what it means to actually do community-engaged research for conservation and open space preservation in the real world. As such, this course will provide students with skills and experience in research design in conservation biology and ecology, community and stakeholder engagement, land use policy and planning, and the practical aspects of land and environmental management. The POST Practicum is a collaboration between the Woods Institute for the Environment and the Haas Center for Public Service.
Terms: Win | Units: 3

EARTHSYS 182: Ecological Farm Management (EESS 282)

A project-based course emphasizing `ways of doing¿ in sustainable agricultural systems based at the new Stanford Educational Farm. Students will work individually and in small groups on farm projects of their choice facilitated and guided by the Educational Farm Director. Potential projects include: orchards, compost systems, pastured poultry, beekeeping, medicinal herbs, mushroom cultivation, native plants, etc.
Terms: Win | Units: 1
Instructors: ; Archie, P. (PI)

EARTHSYS 183: Food Matters: Agriculture in Film (EARTHSYS 283, EESS 183, EESS 283)

Film series presenting historical and contemporary issues dealing with food and agriculture across the globe. Students discuss reactions and thoughts in a round table format. May be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit

EARTHSYS 235: Podcasting the Anthropocene (EARTHSYS 135)

Identification and interview of Stanford researchers to be featured in an audio podcast. Exploration of interviewing techniques, audio storytelling, audio editing, and podcasting as a newly emerging media platform. Individual and group projects. Group workshops focused on preparation, review, and critiques of podcasts.
Terms: Win | Units: 2 | Repeatable 3 times (up to 6 units total)

EARTHSYS 241: Remote Sensing of the Oceans (EARTHSYS 141, EESS 141, EESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4
Instructors: ; Arrigo, K. (PI)

EARTHSYS 242: Remote Sensing of Land (EARTHSYS 142, EESS 162, EESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4
Instructors: ; Lambin, E. (PI)

EARTHSYS 246A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (EARTHSYS 146A, EESS 146A, EESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3
Instructors: ; Thomas, L. (PI)

EARTHSYS 250: Directed Research

Independent research related to student's primary track, carried out after the junior year, during the summer, and/or during the senior year. Student develops own project with faculty supervision. 10-15 page thesis. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 258: Geomicrobiology (EARTHSYS 158, EESS 158, EESS 258)

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Terms: Win | Units: 3
Instructors: ; Francis, C. (PI)

EARTHSYS 260: Internship

Supervised field, lab, or private sector project. May consist of directed research under the supervision of a Stanford faculty member, participation in one of several off campus Stanford programs, or an approved non-Stanford program relevant to the student's Earth Systems studies. Required of and restricted to declared Earth Systems majors. Includes 15-page technical summary research paper that is subject to iterative revision. (WIM)
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 268: The Evolving Sphere of Food Security (EARTHSYS 168)

This seminar delves into a comprehensive new volume on food security written by an all-Stanford team of nineteen faculty and researchers. It explores the interconnections of food security with energy, water, climate, health, and national security, and examines the role of food and agricultural policies and their consequences in countries at different stages of development. Led by the editor of the book, with participation of several of the authors from across many disciplines. Prerequisite: ECON 106. Admission is by application.
Terms: Win | Units: 2
Instructors: ; Naylor, R. (PI)

EARTHSYS 283: Food Matters: Agriculture in Film (EARTHSYS 183, EESS 183, EESS 283)

Film series presenting historical and contemporary issues dealing with food and agriculture across the globe. Students discuss reactions and thoughts in a round table format. May be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit

EARTHSYS 289A: FEED Lab: Innovating in the Local Food System

Offered through the FEED Collaborative, this graduate-level course combines experiential learning in human-centered design, systems thinking and social entrepreneurship. Students will learn and apply these skills to projects that may include: sustainable food and farming technology, disruptive models of production and distribution, food justice, and/or the behavioral economics of eating. Students will benefit from close interaction with the teaching team, working on a multidisciplinary team of their peers, support from industry-leading project sponsors, and the varied perspectives of guest speakers. The goal of this course is to develop the creative confidence of students and, in turn, to work collaboratively with thought leaders in the local food system to design innovative solutions to the challenges they face. Admission is by application: http://feedcollaborative.org/classes/.
Terms: Win | Units: 3-4
Instructors: ; Dunn, D. (PI); Rothe, M. (PI)

EARTHSYS 290: Master's Seminar

Required of and open only to Earth Systems master's students. Reflection on the Earth Systems coterm experience and development of skills to clearly articulate interdisciplinary expertise to potential employers, graduate or professional schools, colleagues, business partners, etc. Hands-on projects to take students through a series of guided reflection activities. Individual and small group exercises. Required, self-chosen final project encapsulates each student's MS expertise in a form relevant to his or her future goals (ie. a personal statement, research poster, portfolio, etc.).
Terms: Win | Units: 2
Instructors: ; Nevle, R. (PI)

EARTHSYS 297: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Archie, P. (PI); Ardoin, N. (PI); Arrigo, K. (PI); Asner, G. (PI); Banerjee, B. (PI); Block, B. (PI); Boggs, C. (PI); Boucher, A. (PI); Cain, B. (PI); Caldeira, K. (PI); Caldwell, M. (PI); Carbajales, P. (PI); Casciotti, K. (PI); Chamberlain, P. (PI); Curran, L. (PI); Daily, G. (PI); Davis, J. (PI); Denny, M. (PI); Diffenbaugh, N. (PI); Dirzo, R. (PI); Dunbar, R. (PI); Durham, W. (PI); Egger, A. (PI); Ernst, W. (PI); Falcon, W. (PI); Fendorf, S. (PI); Field, C. (PI); Francis, C. (PI); Frank, Z. (PI); Freyberg, D. (PI); Gardner, C. (PI); Gerritsen, M. (PI); Gilly, W. (PI); Gordon, D. (PI); Gorelick, S. (PI); Goulder, L. (PI); Hadly, E. (PI); Hayden, T. (PI); Hecker, S. (PI); Hilley, G. (PI); Hoagland, S. (PI); Ingle, J. (PI); Jackson, R. (PI); Jacobson, M. (PI); Jamieson, A. (PI); Jones, J. (PI); Kennedy, D. (PI); Kennedy, J. (PI); Knight, R. (PI); Koseff, J. (PI); Kovscek, A. (PI); Lambin, E. (PI); Lawrence, K. (PI); Litvak, L. (PI); Lobell, D. (PI); Long, S. (PI); Lutomski, P. (PI); Lynham, J. (PI); Masters, G. (PI); Matson, P. (PI); Micheli, F. (PI); Monismith, S. (PI); Mooney, H. (PI); Mormann, F. (PI); Naylor, R. (PI); Nelson, J. (PI); Nevle, R. (PI); Novy, J. (PI); Orr, F. (PI); Ortolano, L. (PI); Osborne, M. (PI); Palumbi, S. (PI); Payne, J. (PI); Phillips, K. (PI); Rajaratnam, B. (PI); Root, T. (PI); Rothe, M. (PI); Saltzman, J. (PI); Schipper, L. (PI); Schneider, S. (PI); Schoolnik, G. (PI); Seto, K. (PI); Simon, G. (PI); Somero, G. (PI); Sweeney, J. (PI); Switzer, P. (PI); Tabazadeh, A. (PI); Thomas, L. (PI); Thompson, B. (PI); Victor, D. (PI); Vitousek, P. (PI); Walbot, V. (PI); Watanabe, J. (PI); Weyant, J. (PI); Wiederkehr, S. (PI); Wight, G. (PI); Wolak, F. (PI); Woodward, J. (PI); Zoback, M. (PI); Erickson, A. (GP); Gilbert, S. (GP)
© Stanford University | Terms of Use | Copyright Complaints