Print Settings
 

STATS 60: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 160)

Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

STATS 116: Theory of Probability

Probability spaces as models for phenomena with statistical regularity. Discrete spaces (binomial, hypergeometric, Poisson). Continuous spaces (normal, exponential) and densities. Random variables, expectation, independence, conditional probability. Introduction to the laws of large numbers and central limit theorem. Prerequisites: MATH 52 and familiarity with infinite series, or equivalent.
Terms: Aut, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

STATS 160: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 60)

Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum | Units: 5

STATS 195: Introduction to R (CME 195)

This short course runs for the first four weeks of the quarter and is offered in fall and spring. It is recommended for students who want to use R in statistics, science, or engineering courses and for students who want to learn the basics of R programming. The goal of the short course is to familiarize students with R's tools for scientific computing. Lectures will be interactive with a focus on learning by example, and assignments will be application-driven. No prior programming experience is needed. Topics covered include basic data structures, File I/O, graphs, control structures, etc, and some useful packages in R.
Terms: Aut, Spr | Units: 1
Instructors: ; Michael, H. (PI); Suo, X. (PI)

STATS 198: Practical Training

For students majoring in Mathematical and Computational Science only. Students obtain employment in a relevant industrial or research activity to enhance their professional experience.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 2 times (up to 6 units total)

STATS 203: Introduction to Regression Models and Analysis of Variance

Modeling and interpretation of observational and experimental data using linear and nonlinear regression methods. Model building and selection methods. Multivariable analysis. Fixed and random effects models. Experimental design. Pre- or corequisite: 200.
Terms: Spr, Sum | Units: 3
Instructors: ; Kaluwa Devage, P. (PI)

STATS 207: Introduction to Time Series Analysis

Time series models used in economics and engineering. Trend fitting, autoregressive and moving average models and spectral analysis, Kalman filtering, and state-space models. Seasonality, transformations, and introduction to financial time series. Prerequisite: basic course in Statistics at the level of 200.
Terms: Spr | Units: 3
Instructors: ; Donoho, D. (PI)

STATS 208: Introduction to the Bootstrap

The bootstrap is a computer-based method for assigning measures of accuracy to statistical estimates. By substituting computation in place of mathematical formulas, it permits the statistical analysis of complicated estimators. Topics: nonparametric assessment of standard errors, biases, and confidence intervals; related resampling methods including the jackknife, cross-validation, and permutation tests. Theory and applications. Prerequisite: course in statistics or probability.
Terms: Spr | Units: 3
Instructors: ; Donoho, D. (PI)

STATS 218: Introduction to Stochastic Processes

Renewal theory, Brownian motion, Gaussian processes, second order processes, martingales.
Terms: Spr | Units: 3
Instructors: ; Romano, J. (PI)

STATS 260C: Workshop in Biostatistics (HRP 260C)

Applications of statistical techniques to current problems in medical science. To receive credit for one or two units, a student must attend every workshop. To receive two units, in addition to attending every workshop, the student is required to write an acceptable one page summary of two of the workshops, with choices made by the student.
Terms: Spr | Units: 1-2 | Repeatable for credit

STATS 262: Intermediate Biostatistics: Regression, Prediction, Survival Analysis (HRP 262)

Methods for analyzing longitudinal data. Topics include Kaplan-Meier methods, Cox regression, hazard ratios, time-dependent variables, longitudinal data structures, profile plots, missing data, modeling change, MANOVA, repeated-measures ANOVA, GEE, and mixed models. Emphasis is on practical applications. Prerequisites: basic ANOVA and linear regression.
Terms: Spr | Units: 3
Instructors: ; Sainani, K. (PI)

STATS 270: A Course in Bayesian Statistics (STATS 370)

Advanced-level Bayesian statistics. Topics: Discussion of the mathematical and theoretical foundation for Bayesian inferential procedures. Examination of the construction of priors and the asymptotic properties of likelihoods and posterior densities. Discussion including but not limited to the case of finite dimensional parameter space. Prerequisite: familiarity with standard probability and multivariate distribution theory.
Terms: Spr | Units: 3
Instructors: ; Wong, W. (PI)

STATS 297: Practical Training

For students in the M.S. program in Financial Mathematics only. Students obtain employment, with the approval and supervision of a faculty member, in a relevant industrial or research activity to enhance their professional experience. Students must submit a written final report upon completion of the internship in order to receive credit. May be repeated once for credit. Prerequisite: consent of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 2 times (up to 6 units total)
Instructors: ; Lai, T. (PI)

STATS 298: Industrial Research for Statisticians

Masters-level research as in 299, but with the approval and supervision of a faculty adviser, it must be conducted for an off-campus employer. Students must submit a written final report upon completion of the internship in order to receive credit. May be repeated once for credit. Prerequisite: enrollment in Statistics M.S. or Ph.D. program, prior to candidacy.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 2 times (up to 6 units total)

STATS 300C: Theory of Statistics

Decision theory formulation of statistical problems. Minimax, admissible procedures. Complete class theorems ("all" minimax or admissible procedures are "Bayes"), Bayes procedures, conjugate priors, hierarchical models. Bayesian non parametrics: diaichlet, tail free, polya trees, bayesian sieves. Inconsistency of bayes rules.
Terms: Spr | Units: 2-4
Instructors: ; Candes, E. (PI)

STATS 303: PhD First Year Student Workshop

For Statistics First Year PhD students only. Discussion of relevant topics in first year student courses, consultation with PhD advisor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 4 times (up to 4 units total)

STATS 306B: Methods for Applied Statistics: Unsupervised Learning

Unsupervised learning techniques in statistics, machine learning, and data mining.
Terms: Spr | Units: 2-3
Instructors: ; Tibshirani, R. (PI)

STATS 310C: Theory of Probability (MATH 230C)

Continuous time stochastic processes: martingales, Brownian motion, stationary independent increments, Markov jump processes and Gaussian processes. Invariance principle, random walks, LIL and functional CLT. Markov and strong Markov property. Infinitely divisible laws. Some ergodic theory. Prerequisite: 310B or MATH 230B.
Terms: Spr | Units: 2-4
Instructors: ; Chatterjee, S. (PI)

STATS 315B: Modern Applied Statistics: Data Mining

Two-part sequence. New techniques for predictive and descriptive learning using ideas that bridge gaps among statistics, computer science, and artificial intelligence. Emphasis is on statistical aspects of their application and integration with more standard statistical methodology. Predictive learning refers to estimating models from data with the goal of predicting future outcomes, in particular, regression and classification models. Descriptive learning is used to discover general patterns and relationships in data without a predictive goal, viewed from a statistical perspective as computer automated exploratory analysis of large complex data sets.
Terms: Spr | Units: 2-3
Instructors: ; Friedman, J. (PI)

STATS 317: Stochastic Processes

Semimartingales, stochastic integration, Ito's formula, Girsanov's theorem. Gaussian and related processes. Stationary/isotropic processes. Integral geometry and geometric probability. Maxima of random fields and applications to spatial statistics and imaging.
Terms: Spr | Units: 3
Instructors: ; Taylor, J. (PI)

STATS 319: Literature of Statistics

Literature study of topics in statistics and probability culminating in oral and written reports. May be repeated for credit.
Terms: Aut, Spr | Units: 1-3 | Repeatable for credit
Instructors: ; Romano, J. (PI); Wong, W. (PI)

STATS 333: Modern Spectral Analysis

Traditional spectral analysis encompassed Fourier methods and their elaborations, under the assumption of a simple superposition of sinusoids, independent of time. This enables development of efficient and effective computational schemes, such as the FFT. Since many systems change in time, it becomes of interest to generalize classical spectral analysis to the time-varying setting. In addition, classical methods suffer from resolution limits which we hope to surpass. In this topics course, we follow two threads. On the one hand, we consider the ¿estimation of instantaneous frequencies and decomposition of source signals, which may be time-varying¿. The thread begins with the empirical mode decomposition (EMD) for non-stationary signal decomposition into intrinsic mode functions (IMF¿s), introduced by N. Huang et al [1], together with its machinery of the sifting process and computation of the Hilbert spectrum, resulting in the so-called adaptive harmonic model (AHM).nNext, this thread considers the wavelet synchrosqueezing transform (WSST) proposed by Daubechies et al [2], which attempts to estimate instantaneous frequencies (IF¿s), via the frequency re-assignment (FRA) rule, that facilitaes non-stationary signal decomposition. In reference [3], a real-time method is proposed for computing the FRA rule; and in reference [4], the exact number of AHM components is determined with more precise estimation of the IF¿s, for more accurate extraction of the signal components and polynomial-like trend. nIn another thread, recent developments in optimization have been applied to obtain time-varying spectra or very high-resolution spectra; in particular, references [5]-[8] give examples of recent results where convex estimation is applied to obtain new and more highly resolved spectral estimates, some with time-varying structure.
Terms: Spr | Units: 3
Instructors: ; Chui, C. (PI); Donoho, D. (PI)

STATS 345: Statistical and Machine Learning Methods for Genomics (BIO 268, BIOMEDIN 245, CS 373, GENE 245)

Introduction to statistical and computational methods for genomics. Sample topics include: expectation maximization, hidden Markov model, Markov chain Monte Carlo, ensemble learning, probabilistic graphical models, kernel methods and other modern machine learning paradigms. Rationales and techniques illustrated with existing implementations used in population genetics, disease association, and functional regulatory genomics studies. Instruction includes lectures and discussion of readings from primary literature. Homework and projects require implementing some of the algorithms and using existing toolkits for analysis of genomic datasets.
Terms: Spr | Units: 3

STATS 362: Topic: Monte Carlo

Random numbers and vectors: inversion, acceptance-rejection, copulas. Variance reduction: antithetics, stratification, control variates, importance sampling. MCMC: Markov chains, detailed balance, Metropolis-Hastings, random walk Metropolis,nnindependence sampler, Gibbs sampling, slice sampler, hybrids of Gibbs and Metropolis, tempering. Sequential Monte Carlo. Quasi-Monte Carlo. Randomized quasi-Monte Carlo. Examples, problems and motivation from Bayesian statistics,nnmachine learning, computational finance and graphics. May be repeat for credit.
Terms: Spr | Units: 2-3 | Repeatable 2 times (up to 6 units total)
Instructors: ; Owen, A. (PI)

STATS 370: A Course in Bayesian Statistics (STATS 270)

Advanced-level Bayesian statistics. Topics: Discussion of the mathematical and theoretical foundation for Bayesian inferential procedures. Examination of the construction of priors and the asymptotic properties of likelihoods and posterior densities. Discussion including but not limited to the case of finite dimensional parameter space. Prerequisite: familiarity with standard probability and multivariate distribution theory.
Terms: Spr | Units: 3
Instructors: ; Wong, W. (PI)

STATS 390: Consulting Workshop

Skills required of practicing statistical consultants, including exposure to statistical applications. Students participate as consultants in the department's drop-in consulting service, analyze client data, and prepare formal written reports. Seminar provides supervised experience in short term consulting. May be repeated for credit. Prerequisites: course work in applied statistics or data analysis, and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

STATS 396: Research Workshop in Computational Biology

Applications of Computational Statistics and Data Mining to Biological Data. Attendance mandatory. Instructor approval required.
| Units: 1-2 | Repeatable 3 times (up to 6 units total)

STATS 397: PhD Oral Exam Workshop

For Statistics PhD students defending their dissertation.
Terms: Spr | Units: 1

STATS 398: Industrial Research for Statisticians

Doctoral research as in 298, but must be conducted for an off-campus employer. Final report required. May be repeated for credit. Prerequisite: Statistics Ph.D. candidate.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

STATS 90: Mathematics in the Real World (MATH 16)

Introduction to non-calculus applications of mathematical ideas and principles in real-world problems. Topics include probability and counting, basic statistical concepts, geometric series. Applications include insurance, gambler's ruin, false positives in disease testing, present value of money, and mortgages. No knowledge of calculus required. Enrollment limited to students who do not have Stanford credit for a high school or college course in calculus or statistics.
| Units: 3 | UG Reqs: GER:DB-Math
Instructors: ; Poulson, J. (PI)
© Stanford University | Terms of Use | Copyright Complaints