Print Settings
 

EARTHSYS 4: Evolution and Extinction: Introduction to Historical Geology (GES 4)

Introduction to the basic tools and principles geologists and paleontologists use to reconstruct the history of the Earth. Principles of stratigraphy, correlation, the geological timescale, the history of biodiversity, and the interpretation of fossils. The use of data from sedimentary geology, geochemistry, and paleontology to test theories for critical events in Earth history such as mass extinctions. Two half-day field trips.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Payne, J. (PI)

EARTHSYS 9: Preparing for Your Community Based Internship (HUMBIO 9, URBANST 101)

This course is designed to help students make the most of their internship experience by setting learning goals in advance, negotiating clear roles and expectations, and preparing for the professional role required as part of the organization. Goal is to help students avoid common pitfalls of internships. Through readings, discussions, and guest speakers, explore how to prepare for internship, work with community placement, and how best to leverage an internship when you return: as a research topic in an honors thesis, as a fellowship placement, or as a stepping stone to future career opportunities. Course oriented to students who have already identified an internship for summer or a later quarter. Course does not cover ways to find or fund an internship in this class.
Terms: Spr | Units: 1

EARTHSYS 10: Introduction to Earth Systems

For non-majors and prospective Earth Systems majors. Multidisciplinary approach using the principles of geology, biology, engineering, and economics to describe how the Earth operates as an interconnected, integrated system. Goal is to understand global change on all time scales. Focus is on sciences, technological principles, and sociopolitical approaches applied to solid earth, oceans, water, energy, and food and population. Case studies: environmental degradation, loss of biodiversity, and resource sustainability.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Ernst, W. (PI)

EARTHSYS 11SI: Grow It, Cook It, Eat It: Personal Empowerment in Interdisciplinary Food Systems

Interdisciplinary examination of sustainable food systems and decision-making at personal, local, and global scales. Discussions focusing on food systems from farm to fork. Hands-on experience farming at the Stanford Educational Farm and cooking in the Stanford Demonstration Kitchen. Guest lecturers from the local food justice movement. Students will become empowered to make informed decisions regarding food choices.
Terms: Aut | Units: 2
Instructors: ; Archie, P. (PI)

EARTHSYS 12SC: Environmental and Geological Field Studies in the Rocky Mountains (EESS 12SC, GES 12SC)

The Rocky Mountain area, ecologically and geologically diverse, is being strongly impacted by changing land-use patterns, global and regional environmental change, and societal demands for energy and natural resources. This three-week field program emphasizes coupled environmental and geological problems in the Rocky Mountains and will cover a broad range of topics including the geologic origin of the American West from three billion years ago to the recent; paleoclimatology and the glacial history of this mountainous region; the long- and short-term carbon cycle and global climate change; and environmental issues in the American West that are related to changing land-use patterns and increased demand for its abundant natural resources. These broad topics are integrated into a coherent field study by examining earth/environmental science-related questions in three different settings: 1) the three-billion-year-old rocks and the modern glaciers of the Wind River Mountains of Wyoming; 2) the sediments in the adjacent Wind River basin that host abundant gas and oil reserves and also contain the long-term climate history of this region; and 3) the volcanic center of Yellowstone National Park and mountainous region of Teton National Park, and the economic and environmental problems associated with gold mining and extraction of oil and gas in areas adjoining these national parks. Students will complete six assignments based upon field exercises, working in small groups to analyze data and prepare reports and maps. Lectures will be held in the field prior to and after fieldwork. Note: This course involves one week of backpacking in the Wind Rivers and hiking while staying in cabins near Jackson Hole, Wyoming, and horseback riding in the Dubois area of Wyoming. Students must arrive in Salt Lake City on Monday, Sept. 1. (Hotel lodging will be provided for the night of Sept. 1, and thereafter students will travel as a Sophomore College group.) We will return to campus on Sunday, Sept. 21. Sophomore College Course: Application required, due noon, April 7, 2015. Apply at http://soco.stanford.edu.
Terms: Sum | Units: 2
Instructors: ; Chamberlain, P. (PI)

EARTHSYS 18: Promoting Sustainability Behavior Change at Stanford

Stanford Green Living Council training course. Strategies for designing and implementing effective behavior change programs for environmental sustainability on campus. Includes methods from community-based social marketing, psychology, behavioral economics, education, public health, social movements, and design. Students design a behavior change intervention project targeting a specific environmental sustainability-related behavior. Lectures online and weekly sections/workshops.
Terms: Aut | Units: 2
Instructors: ; Robinson, T. (PI)

EARTHSYS 23: Human Power, the Environment, and Alternative Transportation

This is a directed-reading course taught for the Alternative Spring Break (ASB) trip going to Portland, OR. Portland is known as a well-planned city with efficient transportation. Although the car is still the primary mode of transport, Portland boasts more alternative forms of transportation than most urban centers in the United States and relies on a sophisticated public transportation system to move its people through key central transit hubs. We will look at the modes of transportation available to us in Portland and other parts of the United States, focusing on bikes, bus systems, and other forms of public transportation. Prerequisite: Only students who applied and were accepted through the Haas Center for Public Service should enroll for this class.
Terms: Win | Units: 1
Instructors: ; Kennedy, J. (PI)

EARTHSYS 30: Ecology for Everyone (BIO 30)

Everything is connected, but how? Ecology is the science of interactions and the changes they generate. This project-based course links individual behavior, population growth, species interactions, and ecosystem function. Introduction to measurement, observation, experimental design and hypothesis testing in field projects, mostly done in groups. The goal is to learn to think analytically about everyday ecological processes involving bacteria, fungi, plants, animals and humans. The course uses basic statistics to analyze data; there are no math prerequisites except arithmetic. Open to everyone, including those who may be headed for more advanced courses in ecology and environmental science.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Gordon, D. (PI)

EARTHSYS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EESS 38N, GES 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: ; Dunbar, R. (PI)

EARTHSYS 41N: The Global Warming Paradox (EESS 41N)

Preference to freshman. Focus is on the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Topics include: Earth¿s energy balance; detection and attribution of climate change; the climate response to enhanced greenhouse forcing; impacts of climate change on natural and human systems; and proposed methods for curbing further climate change. Sources include peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Diffenbaugh, N. (PI)

EARTHSYS 49N: Multi-Disciplinary Perspectives on a Large Urban Estuary: San Francisco Bay (CEE 50N, EESS 49N)

This course will be focused around San Francisco Bay, the largest estuary on the Pacific coasts of both North and South America as a model ecosystem for understanding the critical importance and complexity of estuaries. Despite its uniquely urban and industrial character, the Bay is of immense ecological value and encompasses over 90% of California's remaining coastal wetlands. Students will be exposed to the basics of estuarine biogeochemistry, microbiology, ecology, hydrodynamics, pollution, and ecosystem management/restoration issues through lectures, interactive discussions, and field trips. Knowledge of introductory biology and chemistry is recommended.
Terms: Spr | Units: 3

EARTHSYS 57Q: Climate Change from the Past to the Future (EESS 57Q)

Preference to sophomores. Numeric models to predict how climate responds to increase of greenhouse gases. Paleoclimate during times in Earth's history when greenhouse gas concentrations were elevated with respect to current concentrations. Predicted scenarios of climate models and how these models compare to known hyperthermal events in Earth history. Interactions and feedbacks among biosphere, hydrosphere, atmosphere, and lithosphere. Topics include long- and short-term carbon cycle, coupled biogeochemical cycles affected by and controlling climate change, and how the biosphere responds to climate change. Possible remediation strategies.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Chamberlain, P. (PI)

EARTHSYS 61Q: Food and security (EESS 61Q, INTNLREL 61Q)

The course will provide a broad overview of key policy issues concerning agricultural development and food security, and will assess how global governance is addressing the problem of food security. At the same time the course will provide an overview of the field of international security, and examine how governments and international institutions are beginning to include food in discussions of security.
Terms: Aut | Units: 3

EARTHSYS 100: Environmental and Geological Field Studies in the Rocky Mountains (EESS 101, GES 101)

Three-week, field-based program in the Greater Yellowstone/Teton and Wind River Mountains of Wyoming. Field-based exercises covering topics including: basics of structural geology and petrology; glacial geology; western cordillera geology; paleoclimatology; chemical weathering; aqueous geochemistry; and environmental issues such as acid mine drainage and changing land-use patterns.
Terms: Aut | Units: 3
Instructors: ; Chamberlain, P. (PI)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EARTHSYS 102: Renewable Energy Sources and Greener Energy Processes (ENERGY 102)

The energy sources that power society are rooted in fossil energy although energy from the core of the Earth and the sun is almost inexhaustible; but the rate at which energy can be drawn from them with today's technology is limited. The renewable energy resource base, its conversion to useful forms, and practical methods of energy storage. Geothermal, wind, solar, biomass, and tidal energies; resource extraction and its consequences. Recommended: MATH 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EARTHSYS 103: Energy Resources (CEE 173A, CEE 207A)

Comprehensive overview of fossil and renewable energy resources and energy efficiency. Topics covered for each resource: resource abundance, location, recovery, conversion, consumption, end-uses, environmental impacts, economics, policy, and technology. Applied lectures in specific energy sectors: buildings, transportation, the electricity industry, and energy in the developing world. Required field trips to local energy facilities. Optional discussion section for extra unit. CEE 173 is offered for 4-5 units; ES 103 is offered for 4-5 units; CEE 207A is offered for 3-5 units: instructor approval required for 3-unit option.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI

EARTHSYS 104: The Water Course (GEOPHYS 104)

The pathway that water takes from rainfall to the tap using student home towns as an example. How the geological environment controls the quantity and quality of water; taste tests of water from around the world. Current U.S. and world water supply issues. Offered Spring 2014.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: ; Knight, R. (PI)

EARTHSYS 105: Food and Community: New Visions for a Sustainable Future (EESS 105)

Through this course students will learn about the community and outreach component of the urban gardening movement. Over the quarter students will learn about urban farming, about projects that work to increase access of the most underserved to fresh and local food, and about the challenges surrounding these efforts. The theme of the course will be stories- stories of food and community, of innovation, and of service. Students will learn through engaging in conversation with different leaders in the local food movement. Additionally, through hands-on learning and participation, students will become familiar with different types of community food projects in the Bay Area, including urban farms, free food giveaways, food banks, and gleaning projects. Service Learning Course (certified by Haas Center). Limited enrollment. May be repeated for credit.
Terms: Aut | Units: 3 | Repeatable for credit
Instructors: ; Chamberlain, P. (PI)

EARTHSYS 105A: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105A)

Formerly 96A - Jasper Ridge Docent Training. First of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course.
Terms: Win | Units: 4

EARTHSYS 105B: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105B)

Formerly 96B - Jasper Ridge Docent Training. First of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course.
Terms: Spr | Units: 4

EARTHSYS 106: World Food Economy (ECON 106, EESS 106)

The interrelationships among food, populations, resources, and economic development. The role of agricultural and rural development in achieving economic and social progress in low-income nations. Emphasis is on public sector decision making as it relates to food policy.
Terms: Win | Units: 5 | UG Reqs: WAY-SI

EARTHSYS 111: Biology and Global Change (BIO 117, EESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 112: Human Society and Environmental Change (EESS 112, HISTORY 103D)

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1A
Terms: Aut | Units: 4 | UG Reqs: WAY-SI

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 113)

Earthquake location, magnitude and intensity scales, seismic waves, styles of eruptions and volcanic hazards, tsunami waves, types and global distribution of volcanoes, volcano forecasting. Plate tectonics as a framework for understanding earthquake and volcanic processes. Forecasting; earthquake resistant design; building codes; and probabilistic hazard assessment. For non-majors and potential earth scientists. Offered every year, spring quarter.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: ; Beroza, G. (PI)

EARTHSYS 115: Wetlands Ecology of the Pantanal Prefield Seminar

This seminar will prepare students for their overseas field experience in the Pantanal, Brazil, the largest wetland in the world, studying wetlands ecology and conservation in situ. Students will give presentations on specific aspects of the Pantanal and lay the groundwork for the presentations they will be giving during the field seminar where access to the internet and to other scholarly resources will be quite limited. Additional topics include: logistics, health and safety, cultural sensitivity, geography and politics, and basic language skills; also, post-field issues such as reverse culture shock, and ways in which participants can consolidate and build up their abroad experiences after they return to campus. Students will have the opportunity to participate in a pilot study aimed at developing a series of innovative online curriculum based upon their field experience.
Terms: Win | Units: 2-3
Instructors: ; Siegel, R. (PI)

EARTHSYS 121: Building a Sustainable Society: New Approaches for Integrating Human and Environmental Priorities (HUMBIO 110)

"Building a Sustainable Society: New approaches to integrating human and environmental priorities" draws on economics, natural resources management, sociology and leadership science to examine theoretical frameworks and diverse case studies that illustrate the main drivers, core features and challenges of building a sustainable society where human beings and the natural environment thrive. Themes include collaborative consumption, the sharing economy, worker-owned cooperatives, community-corporate partnerships, cradle to cradle design, social entrepreneurship, impact investing, "beyond GDP" measures, and 21st century leadership. Critical perspectives, lectures and student-led discussions guide analysis of innovations within public, private and civic sectors globally, with emphasis on Latin America.
Terms: Win | Units: 3
Instructors: ; Novy, J. (PI)

EARTHSYS 127: GIS for good: Applications of GIS for International Development and Humanitarian Assistance (EESS 122, EESS 222)

This service-learning course exposes students to geographic information systems (GIS) as a tool for exploring alternative solutions to complex environmental and humanitarian issues in the international arena. The project-based, interdisciplinary structure of this class gives primary emphasis to the use of GIS for field data collection, mapping, analysis and visualization that allows for multi-criteria assessment of community development. Those with no prior GIS experience will be required to take an introductory GIS workshop hosted by the Geospatial Center in Branner Library during the first two weeks of class.
Terms: Spr | Units: 3-4

EARTHSYS 138: International Urbanization Seminar: Cross-Cultural Collaboration for Sustainable Urban Development (IPS 274, URBANST 145)

Comparative approach to sustainable cities, with focus on international practices and applicability to China. Tradeoffs regarding land use, infrastructure, energy and water, and the need to balance economic vitality, environmental quality, cultural heritage, and social equity. Student teams collaborate with Chinese faculty and students partners to support urban sustainability projects. Limited enrollment via application; see internationalurbanization.org for details. Prerequisites: consent of the instructor(s).
Terms: Spr | Units: 4-5 | UG Reqs: WAY-SI
Instructors: ; Chan, D. (PI); Hsu, K. (PI)

EARTHSYS 140: The Energy-Water Nexus (GEOPHYS 135)

Energy, water, and food are our most vital resources constituting a tightly intertwined network: energy production requires water, transporting and treating water needs energy, producing food requires both energy and water. The course is an introduction to learn specifically about the links between energy and water. Students will look first at the use of water for energy production, then at the role of energy in water projects, and finally at the challenge in figuring out how to keep this relationship as sustainable as possible. Students will explore case examples and are encouraged to contribute examples of concerns for discussion as well as suggest a portfolio of sustainable energy options.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR
Instructors: ; Vanorio, T. (PI)

EARTHSYS 141: Remote Sensing of the Oceans (EARTHSYS 241, EESS 141, EESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR
Instructors: ; Arrigo, K. (PI)

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, EESS 162, EESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4
Instructors: ; Lambin, E. (PI)

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (EESS 164)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci
Instructors: ; Carbajales, P. (PI)

EARTHSYS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (EARTHSYS 246A, EESS 146A, EESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3
Instructors: ; Thomas, L. (PI)

EARTHSYS 146B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (EARTHSYS 246B, EESS 146B, EESS 246B, GEOPHYS 146B, GEOPHYS 246B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 164 or CEE 262D, or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Thomas, L. (PI)

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, EESS 151, EESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: ; Arrigo, K. (PI)

EARTHSYS 152: Marine Chemistry (EARTHSYS 252, EESS 152, EESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA
Instructors: ; Casciotti, K. (PI)

EARTHSYS 155: Science of Soils (EESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 156: Soil and Water Chemistry (EARTHSYS 256, EESS 156, EESS 256)

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Terms: Win | Units: 1-4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Ying, S. (PI)

EARTHSYS 164: Introduction to Physical Oceanography (CEE 164, CEE 262D, EESS 148)

The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci

EARTHSYS 170: Environmental Geochemistry (GES 170, GES 270)

Solid, aqueous, and gaseous phases comprising the environment, their natural compositional variations, and chemical interactions. Contrast between natural sources of hazardous elements and compounds and types and sources of anthropogenic contaminants and pollutants. Chemical and physical processes of weathering and soil formation. Chemical factors that affect the stability of solids and aqueous species under earth surface conditions. The release, mobility, and fate of contaminants in natural waters and the roles that water and dissolved substances play in the physical behavior of rocks and soils. The impact of contaminants and design of remediation strategies. Case studies. Prerequisite: 90 or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: ; Brown, G. (PI)

EARTHSYS 177: Interdisciplinary Research Survival Skills (EARTHSYS 277, ENVRINST 177, ENVRINST 277)

Learning in interdisciplinary situations. Framing research questions. Developing research methods that benefit from interdisciplinary understanding. Writing for multiple audiences and effectively making interdisciplinary presentations. Discussions with interdisciplinary experts from across campus regarding interdisciplinary research projects.
Terms: Spr | Units: 2
Instructors: ; Root, T. (PI)

EARTHSYS 177C: Specialized Writing and Reporting: Environmental Journalism (COMM 177C, COMM 277C, ENVRES 277C)

(Graduate students register for COMM / ENVRES 277C.) Practical, collaborative, writing-intensive course in science-based environmental journalism. Science and journalism students learn how to identify and write engaging stories about environmental issues and science, how to assess the quality and relevance of environmental news, how to cover the environment and science beats effectively, and how to build bridges between the worlds of journalism and science. Limited enrollment: preference to journalism students and students in the natural and environmental sciences. Prerequisite: COMM 104, ENVRES 200 or consent of instructor. Admissions by application only, available from thayden@stanford.edu.
Terms: Spr | Units: 4-5
Instructors: ; Hayden, T. (PI)

EARTHSYS 179S: Seminar: Issues in Environmental Science, Technology and Sustainability (CEE 179S, CEE 279S, EESS 179S)

Invited faculty, researchers and professionals share their insights and perspectives on a broad range of environmental and sustainability issues. Students critique seminar presentations and associated readings.
Terms: Sum | Units: 1-2 | Repeatable 2 times (up to 4 units total)
Instructors: ; Robertson, A. (PI)

EARTHSYS 180B: Principles and Practices of Sustainable Agriculture (EESS 280B)

Field-based training in ecologically sound agricultural practices at the Stanford Community Farm. Weekly lessons, field work, and group projects. Field trips to educational farms in the area. Topics include: soils, composting, irrigation techniques, IPM, basic plant anatomy and physiology, weeds, greenhouse management, and marketing.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: WAY-SMA | Repeatable 3 times (up to 12 units total)
Instructors: ; Archie, P. (PI)

EARTHSYS 183: Food Matters: Agriculture in Film (EARTHSYS 283, EESS 183, EESS 283)

Film series presenting historical and contemporary issues dealing with food and agriculture across the globe. Students discuss reactions and thoughts in a round table format. May be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit
Instructors: ; Archie, P. (PI)

EARTHSYS 185: Feeding Nine Billion

Feeding a growing and wealthier population is a huge task, and one with implications for many aspects of society and the environment. There are many tough choices to be made- on fertilizers, groundwater pumping, pesticide use, organics, genetic modification, etc. Unfortunately, many people form strong opinions about these issues before understanding some of the basics of how food is grown, such as how most farmers currently manage their fields, and their reasons for doing so. The goal of this class is to present an overview of global agriculture, and the tradeoffs involved with different practices. Students will develop two key knowledge bases: basic principles of crop ecology and agronomy, and familiarity with the scale of the global food system. The last few weeks of the course will be devoted to building on this knowledge base to evaluate different future directions for agriculture.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR
Instructors: ; Lobell, D. (PI)

EARTHSYS 187: FEED the Change: Redesigning Food Systems (MS&E 187)

Introductory course to design and systems thinking, with an emphasis on food systems. Series of diverse experiences (lectures, workshops, teaching, field trips, storytelling, and more) teaching how to use human-centered design to approach problem solving, how to begin analyzing complex systems, and how to work effectively in teams. Explore passions and interests, as well as different elements of the design process. Work in teams on real projects, and teach other students about food and design thinking. Admission is by application: http://feedcollaborative.org/classes/.
Terms: Aut | Units: 2-3 | UG Reqs: WAY-CE
Instructors: ; Dunn, D. (PI); Rothe, M. (PI)

EARTHSYS 188: Social and Environmental Tradeoffs in Climate Decision-Making (EARTHSYS 288)

How can we ensure that measures taken to mitigate global climate change don¿t create larger social and environmental problems? What metrics should be used to compare potential climate solutions beyond cost and technical feasibility, and how should these metrics be weighed against each other? How can modeling efforts and stakeholder engagement be best integrated into climate decision making? What information are we still missing to make fully informed decisions between technologies and policies? Exploration of these questions, alongside other issues related to potential negative externalities of emerging climate solutions. Evaluation of energy, land use, and geoengineering approaches in an integrated context, culminating in a climate stabilization group project.
Terms: Spr | Units: 1-2

EARTHSYS 195: Natural Hazards and Risk Communication

Introduction to the science behind natural hazards, the risks associated with these hazards, and effective methods of communicating them to a variety of audiences. Examination of methods of translation and communication. Investigation of the relative effectiveness of these methods for increasing preparedness and resiliency to natural hazards. Satisfies the Earth Systems WIM requirement.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE
Instructors: ; Phillips, K. (PI)

EARTHSYS 197: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Kennedy, J. (PI)

EARTHSYS 200: Sustaining Action: Research, Analysis and Writing for the Public (ENVRES 200)

Preference to graduate students and senior undergraduates in environmental, natural and social sciences, engineering, journalism. Students help produce and publish SAGE, an eco advice column, by choosing, researching, and answering questions about sustainable living submitted by Stanford alumni and the general public. Prerequisite: admission by application, available from instructor, thayden@stanford.edu. (Meets Earth Systems WIM requirement).
Terms: Aut, Spr | Units: 3 | UG Reqs: WAY-CE
Instructors: ; Hayden, T. (PI)

EARTHSYS 202: PhD Students on the PhD: Doctoral Research in Environmental Science

This seminar is designed for coterms and upperclassmen who are considering pursuing a PhD in environmental science but want to know what that path really entails. Consisting of small-group discussions with current PhD students, this course will feature conversations on a range of PhD research topics and will also delve into the substance of the PhD experience itself. We will explore PhD students' programs and career paths: the milestones, processes, and issues that guide their decisions and shape their PhD experiences. Discussion themes will be determined partly in advance and partly based on the interests of participants and could include topics such as choosing a PhD program or research question, interdisciplinarity, community engagement, or work/life balance.
Terms: Spr | Units: 1

EARTHSYS 210A: Senior Seminar

Interdisciplinary problem analysis and oral communication. Students present results of their Earth Systems internship or research project. Students participate in a research or service learning group project focused on a local environmental issue. Service Learning Course (certified by Haas Center). Prerequisite: EARTHSYS 260.
Terms: Aut | Units: 3
Instructors: ; Phillips, K. (PI)

EARTHSYS 210B: Senior Seminar

Interdisciplinary problem analysis and oral communication. Students present results of their Earth Systems internship or research project. Students participate in a research or service learning group project focused on a local environmental issue. Service Learning Course (certified by Haas Center). Prerequisite: EARTHSYS 260.
Terms: Win | Units: 3
Instructors: ; Phillips, K. (PI)

EARTHSYS 210C: Senior Seminar

Interdisciplinary problem analysis and oral communication. Students present results of their Earth Systems internship or research project. Students participate in a research or service learning group project focused on a local environmental issue. Service Learning Course (certified by Haas Center). Prerequisite: EARTHSYS 260.
Terms: Win | Units: 3

EARTHSYS 211: Fundamentals of Modeling (EESS 211)

Simulation models are a powerful tool for environmental research, if used properly. The major concepts and techniques for building and evaluating models. Topics include model calibration, model selection, uncertainty and sensitivity analysis, and Monte Carlo and bootstrap methods. Emphasis is on gaining hands-on experience using the R programming language. Prerequisite: asic knowledge of nnstatistics.
Terms: Aut | Units: 3-5
Instructors: ; Lobell, D. (PI)

EARTHSYS 238: Land Use

(Same as LAW 338.) This course focuses on the pragmatic (rather than theoretical) aspects of contemporary land use law and policy, including: nuisance as a land use tool and foundation for modern land use law; use and abuse of the "police power" (the legal basis for land use control); zoning flexibility; vested property rights, development agreements, and takings; redevelopment; growth control; and direct democracy. We explore how land use decisions affect environmental quality and how land use decision-making addresses environmental impacts. Special Instructions: All graduate students from other departments are encouraged to enroll, and no pre-requisites apply. Student participation is essential. Roughly two-thirds of the class time will involve a combination of lecture and classroom discussion. The remaining time will engage students in case studies based on actual land use issues and disputes. Elements used in grading: Attendance, class participation, writing assignments, and final exam.
Terms: Spr | Units: 3

EARTHSYS 241: Remote Sensing of the Oceans (EARTHSYS 141, EESS 141, EESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4
Instructors: ; Arrigo, K. (PI)

EARTHSYS 242: Remote Sensing of Land (EARTHSYS 142, EESS 162, EESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4
Instructors: ; Lambin, E. (PI)

EARTHSYS 246A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (EARTHSYS 146A, EESS 146A, EESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3
Instructors: ; Thomas, L. (PI)

EARTHSYS 246B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (EARTHSYS 146B, EESS 146B, EESS 246B, GEOPHYS 146B, GEOPHYS 246B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 164 or CEE 262D, or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Thomas, L. (PI)

EARTHSYS 250: Directed Research

Independent research related to student's primary track, carried out after the junior year, during the summer, and/or during the senior year. Student develops own project with faculty supervision. 10-15 page thesis. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 251: Biological Oceanography (EARTHSYS 151, EESS 151, EESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4
Instructors: ; Arrigo, K. (PI)

EARTHSYS 252: Marine Chemistry (EARTHSYS 152, EESS 152, EESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/EARTHSYS 151/251)
Terms: Spr | Units: 3-4
Instructors: ; Casciotti, K. (PI)

EARTHSYS 256: Soil and Water Chemistry (EARTHSYS 156, EESS 156, EESS 256)

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Terms: Win | Units: 1-4
Instructors: ; Ying, S. (PI)

EARTHSYS 260: Internship

Supervised field, lab, or private sector project. May consist of directed research under the supervision of a Stanford faculty member, participation in one of several off campus Stanford programs, or an approved non-Stanford program relevant to the student's Earth Systems studies. Required of and restricted to declared Earth Systems majors. Includes 15-page technical summary research paper that is subject to iterative revision. (WIM)
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 277: Interdisciplinary Research Survival Skills (EARTHSYS 177, ENVRINST 177, ENVRINST 277)

Learning in interdisciplinary situations. Framing research questions. Developing research methods that benefit from interdisciplinary understanding. Writing for multiple audiences and effectively making interdisciplinary presentations. Discussions with interdisciplinary experts from across campus regarding interdisciplinary research projects.
Terms: Spr | Units: 2
Instructors: ; Root, T. (PI)

EARTHSYS 283: Food Matters: Agriculture in Film (EARTHSYS 183, EESS 183, EESS 283)

Film series presenting historical and contemporary issues dealing with food and agriculture across the globe. Students discuss reactions and thoughts in a round table format. May be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit
Instructors: ; Archie, P. (PI)

EARTHSYS 288: Social and Environmental Tradeoffs in Climate Decision-Making (EARTHSYS 188)

How can we ensure that measures taken to mitigate global climate change don¿t create larger social and environmental problems? What metrics should be used to compare potential climate solutions beyond cost and technical feasibility, and how should these metrics be weighed against each other? How can modeling efforts and stakeholder engagement be best integrated into climate decision making? What information are we still missing to make fully informed decisions between technologies and policies? Exploration of these questions, alongside other issues related to potential negative externalities of emerging climate solutions. Evaluation of energy, land use, and geoengineering approaches in an integrated context, culminating in a climate stabilization group project.
Terms: Spr | Units: 1-2

EARTHSYS 290: Master's Seminar

Required of and open only to Earth Systems master's students. Reflection on the Earth Systems coterm experience and development of skills to clearly articulate interdisciplinary expertise to potential employers, graduate or professional schools, colleagues, business partners, etc. Hands-on projects to take students through a series of guided reflection activities. Individual and small group exercises. Required, self-chosen final project encapsulates each student's MS expertise in a form relevant to his or her future goals (ie. a personal statement, research poster, portfolio, etc.).
Terms: Aut | Units: 2
Instructors: ; Phillips, K. (PI)

EARTHSYS 297: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Archie, P. (PI); Ardoin, N. (PI); Arrigo, K. (PI); Asner, G. (PI); Banerjee, B. (PI); Block, B. (PI); Boggs, C. (PI); Boucher, A. (PI); Caldeira, K. (PI); Caldwell, M. (PI); Carbajales, P. (PI); Casciotti, K. (PI); Chamberlain, P. (PI); Curran, L. (PI); Daily, G. (PI); Davis, J. (PI); Denny, M. (PI); Diffenbaugh, N. (PI); Dirzo, R. (PI); Dunbar, R. (PI); Durham, W. (PI); Egger, A. (PI); Ernst, W. (PI); Falcon, W. (PI); Fendorf, S. (PI); Field, C. (PI); Francis, C. (PI); Frank, Z. (PI); Freyberg, D. (PI); Gardner, C. (PI); Gerritsen, M. (PI); Gilly, W. (PI); Gordon, D. (PI); Gorelick, S. (PI); Goulder, L. (PI); Hadly, E. (PI); Hayden, T. (PI); Hecker, S. (PI); Hilley, G. (PI); Ingle, J. (PI); Jacobson, M. (PI); Jamieson, A. (PI); Jones, J. (PI); Kennedy, D. (PI); Kennedy, J. (PI); Knight, R. (PI); Koseff, J. (PI); Kovscek, A. (PI); Lambin, E. (PI); Lawrence, K. (PI); Litvak, L. (PI); Lobell, D. (PI); Long, S. (PI); Lynham, J. (PI); Masters, G. (PI); Matson, P. (PI); Micheli, F. (PI); Monismith, S. (PI); Mooney, H. (PI); Mormann, F. (PI); Naylor, R. (PI); Nelson, J. (PI); Orr, F. (PI); Ortolano, L. (PI); Palumbi, S. (PI); Payne, J. (PI); Phillips, K. (PI); Rajaratnam, B. (PI); Root, T. (PI); Saltzman, J. (PI); Schipper, L. (PI); Schneider, S. (PI); Schoolnik, G. (PI); Seto, K. (PI); Simon, G. (PI); Somero, G. (PI); Sweeney, J. (PI); Switzer, P. (PI); Tabazadeh, A. (PI); Thomas, L. (PI); Thompson, B. (PI); Victor, D. (PI); Vitousek, P. (PI); Walbot, V. (PI); Watanabe, J. (PI); Weyant, J. (PI); Wiederkehr, S. (PI); Wight, G. (PI); Wolak, F. (PI); Woodward, J. (PI); Zoback, M. (PI)

EARTHSYS 298: Earth Systems Book Review

For Earth Systems master's students and advanced undergraduates only. Analysis and discussion of selected literary nonfiction books relevant to Earth systems topics. Examples of previous topics include political presentations of environmental change in the popular press, review of the collected works of Aldo Leopold, disaster literature, and global warming.
Terms: Spr | Units: 2 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints