Print Settings
 

CS 1C: Introduction to Computing at Stanford

For those with limited experience with computers or who want to learn more about Stanford's computing environment. Topics include: computer maintenance and security, computing resources, Internet privacy, and copyright law. One-hour lecture/demonstration in dormitory clusters prepared and administered weekly by the Resident Computer Consultant (RCC). Final project. Not a programming course.
Terms: Aut | Units: 1
Instructors: ; Smith, S. (PI)

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. The time listed on AXESS is for the first week's logistical meeting only. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Spr | Units: 1

CS 2C: Introduction to Media Production

Sound, image and video editing techniques and applications, including understanding file formats and publishing multimedia online. Topics include GarageBand, Photoshop, iMovie, and production best practices. Weekly lecture followed by lab section. Second unit for additional creative production assignments completed outside of class time and Final Project with group. Not a programming course, but will use computer multimedia applications heavily for editing.
Terms: Aut, Win, Spr | Units: 1-2
Instructors: ; Scott, E. (PI)

CS 9: Problem-Solving for the CS Technical Interview

This course will prepare students to interview for software engineering and related internships and full-time positions in industry. Drawing on multiple sources of actual interview questions, students will learn key problem-solving strategies specific to the technical/coding interview. Students will be encouraged to synthesize information they have learned across different courses in the major. Emphasis will be on the oral and combination written-oral modes of communication common in coding interviews, but which are unfamiliar settings for problem solving for many students. Prerequisites: CS 106B or X.
Terms: Aut, Win | Units: 1

CS 27: Literature and Social Online Learning (COMPLIT 239B, ENGLISH 239B)

Study, develop, and test new digital methods, games, apps, interactive social media uses to innovate how the humanities can engage and educate students and the public today. Exploring well-known literary texts, digital storytelling forms and literary communities online, students work individually and in interdisciplinary teams to develop innovative projects aimed at bringing literature to life. Tasks include literary role-plays on Twitter; researching existing digital pedagogy and literary projects, games, and apps; reading and coding challenges; collaborative social events mediated by new technology. Minimal prerequisites which vary for students in CS and the humanities; please check with instructors.
Terms: Aut | Units: 3-5 | UG Reqs: WAY-A-II

CS 42: Callback Me Maybe: Contemporary Javascript

Introduction to the JavaScript programming language with a focus on building contemporary applications. Course consists of in-class activities and programming assignments that challenge students to create functional web apps (e.g. Yelp, Piazza, Instagram). Topics include syntax/semantics, event-based programming, document object model (DOM), application programming interfaces (APIs), asynchronous JavaScript and XML (AJAX), jQuery, Node.js, and MongoDB. Prerequisite: CS 107.
Terms: Aut, Spr | Units: 2

CS 45N: Computers and Photography: From Capture to Sharing

Preference to freshmen with experience in photography and use of computers. Elements of photography, such as lighting, focus, depth of field, aperture, and composition. How a photographer makes photos available for computer viewing, reliably stores them, organizes them, tags them, searches them, and distributes them online. No programming experience required. Digital SLRs and editing software will be provided to those students who do not wish to use their own.
Terms: Aut | Units: 3-4 | UG Reqs: WAY-CE
Instructors: ; Garcia-Molina, H. (PI)

CS 54N: Great Ideas in Computer Science

Stanford Introductory Seminar. Preference to freshmen. Covers the intellectual tradition of computer science emphasizing ideas that reflect the most important milestones in the history of the discipline. No prior experience with programming is assumed. Topics include programming and problem solving; implementing computation in hardware; algorithmic efficiency; the theoretical limits of computation; cryptography and security; and the philosophy behind artificial intelligence.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Roberts, E. (PI)

CS 55N: Computer and Information Security

Preference to freshmen. Why computer systems are vulnerable to attack. Common software bugs, how to exploit technology for blocking common attacks, cryptography, and legal issues.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Boneh, D. (PI)

CS 76N: Elections and Technology

Freshmen Seminar. Since the disastrous Presidential election in Florida in 2000, problems with and worries about technology in elections have gained increasing attention. Are electronic voting machines secure? Are paper ballots secure? Why can't we just vote over our cell phones or the internet? Should voters have to show identification? How do legislators decide these things? How can technologists be heard? We'll look into these questions as we watch others struggle with them in the 2012 Presidential election.
Terms: Aut | Units: 3
Instructors: ; Dill, D. (PI)

CS 91SI: Digital Canvas: Intro to Visual Design on the Web

Introduction to visual design concepts with a focus on modern interfaces like web, mobile and app. Topics include visual design elements and principles such as color theory, layout and composition, typography, and aspects of communication. Students will analyze existing designs, and use various technical tools to implement their own designs. This course consists of a series of in-class activities, design projects, peer critique sessions, and guest speakers. Recommended prerequisites: some web programming experience. Application required.
Terms: Aut, Spr | Units: 2

CS 103: Mathematical Foundations of Computing

Mathematical foundations required for computer science, including propositional predicate logic, induction, sets, functions, and relations. Formal language theory, including regular expressions, grammars, finite automata, Turing machines, and NP-completeness. Mathematical rigor, proof techniques, and applications. Prerequisite: 106A or equivalent.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR

CS 105: Introduction to Computers

For non-technical majors. What computers are and how they work. Practical experience in programming. Construction of computer programs and basic design techniques. A survey of Internet technology and the basics of computer hardware. Students in technical fields and students looking to acquire programming skills should take 106A or 106X. Students with prior computer science experience at the level of 106 or above require consent of instructor. Prerequisite: minimal math skills.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 106A: Programming Methodology (ENGR 70A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Uses the Java programming language. Emphasis is on good programming style and the built-in facilities of the Java language. No prior programming experience required. Summer quarter enrollment is limited. Priority given to Stanford students.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 106B: Programming Abstractions (ENGR 70B)

Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees, graphs). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or equivalent. Summer quarter enrollment is limited. Priority given to Stanford students.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 106L: Standard C++ Programming Laboratory

Supplemental lab to 106B and 106X. Additional features of standard C++ programming practice. Possible topics include advanced C++ language features, standard libraries, STL containers and algorithms, object memory management, operator overloading, and inheritance. Prerequisite: consent of instructor. Corequisite: 106B or 106X.
Terms: Aut, Spr | Units: 1

CS 106X: Programming Abstractions (Accelerated) (ENGR 70X)

Intensive version of 106B for students with a strong programming background interested in a rigorous treatment of the topics at an accelerated pace. Additional advanced material and more challenging projects. Prerequisite: excellence in 106A or equivalent, or consent of instructor.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR
Instructors: ; Cain, J. (PI); Lee, C. (PI)

CS 107: Computer Organization and Systems

Introduction to the fundamental concepts of computer systems. Explores how computer systems execute programs and manipulate data, working from the C programming language down to the microprocessor. Topics covered include: the C programming language, data representation, machine-level code, computer arithmetic, elements of code compilation, memory organization and management, and performance evaluation and optimization. Prerequisites: 106B or X, or consent of instructor.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 108: Object-Oriented Systems Design

Software design and construction in the context of large OOP libraries. Taught in Java. Topics: OOP design, design patterns, testing, graphical user interface (GUI) OOP libraries, software engineering strategies, approaches to programming in teams. Prerequisite: 107.
Terms: Aut, Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 109: Introduction to Probability for Computer Scientists

Topics include: counting and combinatorics, random variables, conditional probability, independence, distributions, expectation, point estimation, and limit theorems. Applications of probability in computer science including machine learning and the use of probability in the analysis of algorithms. Prerequisites: 103, 106B or X, multivariate calculus at the level of MATH 51 or CME 100 or equivalent.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

CS 109L: Statistical Computing with R Laboratory

Supplemental lab to CS109. Introduces the R programming language for statistical computing. Topics include basic facilities of R including mathematical, graphical, and probability functions, building simulations, introductory data fitting and machine learning. Provides exposure to the functional programming paradigm. Corequisite: CS109.
Terms: Aut, Spr | Units: 1
Instructors: ; Lee, C. (PI); Shin, K. (PI)

CS 110: Principles of Computer Systems

Principles and practice of engineering of computer software and hardware systems. Topics include: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; security, and encryption; and performance optimizations. Prerequisite: 107.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Cain, J. (PI)

CS 122: Artificial Intelligence: Philosophy, Ethics, & Impact (SYMSYS 122)

Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems respect our ethical principles when they make decisions at speeds and for rationales that exceed our ability to comprehend? What, if any, legal rights and responsibilities should we grant them? And should we regard them merely as sophisticated tools or as a newly emerging form of life? The goal of this course is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: Aut | Units: 3-4 | UG Reqs: WAY-ER
Instructors: ; Kaplan, J. (PI)

CS 131: Computer Vision: Foundations and Applications

Robots that can navigate space and perform duties, search engines that can index billions of images and videos, algorithms that can diagnose medical images for diseases, or smart cars that can see and drive safely: Lying in the heart of these modern AI applications are computer vision technologies that can perceive, understand and reconstruct the complex visual world. This course is designed for students who are interested in learning about the fundamental principles and important applications of computer vision. Course will introduce a number of fundamental concepts in computer vision and expose students to a number of real-world applications, plus guide students through a series of well designed projects such that they will get to implement cutting-edge computer vision algorithms. Prerequisites: Students should be familiar with Matlab (i.e. have programmed in Matlab before) and Linux; plus Calculus & Linear Algebra.
Terms: Aut | Units: 3-4

CS 145: Introduction to Databases

The course covers database design and the use of database management systems for applications. It includes extensive coverage of the relational model, relational algebra, and SQL. It also covers XML data including DTDs and XML Schema for validation, and the query and transformation languages XPath, XQuery, and XSLT. The course includes database design in UML, and relational design principles based on dependencies and normal forms. Many additional key database topics from the design and application-building perspective are also covered: indexes, views, transactions, authorization, integrity constraints, triggers, on-line analytical processing (OLAP), JSON, and emerging NoSQL systems. Class time will include guest speakers from industry and additional advanced topics as time and class interest permits. Prerequisites: 103 and 107 (or equivalent).
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Re, C. (PI); Abuzaid, F. (GP)

CS 147: Introduction to Human-Computer Interaction Design

Introduces fundamental methods and principles for designing, implementing, and evaluating user interfaces. Topics: user-centered design, rapid prototyping, experimentation, direct manipulation, cognitive principles, visual design, social software, software tools. Learn by doing: work with a team on a quarter-long design project, supported by lectures, readings, and studios. Prerequisite: 106B or X or equivalent programming experience.
Terms: Aut | Units: 3-4
Instructors: ; Landay, J. (PI)

CS 148: Introduction to Computer Graphics and Imaging

Introductory prerequisite course in the computer graphics sequence introducing students to the technical concepts behind creating synthetic computer generated images. Focuses on using OpenGL to create visual imagery, as well as an understanding of the underlying mathematical concepts including triangles, normals, interpolation, texture mapping, bump mapping, etc. Course will cover fundamental understanding of light and color, as well as how it impacts computer displays and printers. Class will discuss more thoroughly how light interacts with the environment, constructing engineering models such as the BRDF, plus various simplifications into more basic lighting and shading models. Also covers ray tracing technology for creating virtual images, while drawing parallels between ray tracers and real world cameras to illustrate various concepts. Anti-aliasing and acceleration structures are also discussed. The final class mini-project consists of building out a ray tracer to create visually compelling images. Starter codes and code bits will be provided to aid in development, but this class focuses on what you can do with the code as opposed to what the code itself looks like. Therefore grading is weighted toward in person "demos" of the code in action - creativity and the production of impressive visual imagery are highly encouraged. Prerequisites: CS 107, MATH 51.
Terms: Aut, Sum | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-CE

CS 157: Logic and Automated Reasoning

An elementary exposition from a computational point of view of propositional and predicate logic, axiomatic theories, and theories with equality and induction. Interpretations, models, validity, proof, strategies, and applications. Automated deduction: polarity, skolemization, unification, resolution, equality. Prerequisite: 103 or 103B.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci

CS 161: Design and Analysis of Algorithms

Worst and average case analysis. Recurrences and asymptotics. Efficient algorithms for sorting, searching, and selection. Data structures: binary search trees, heaps, hash tables. Algorithm design techniques: divide-and-conquer, dynamic programming, greedy algorithms, amortized analysis, randomization. Algorithms for fundamental graph problems: minimum-cost spanning tree, connected components, topological sort, and shortest paths. Possible additional topics: network flow, string searching. Prerequisite: 103 or 103B; 109 or STATS 116.
Terms: Aut, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 181: Computers, Ethics, and Public Policy

(Formerly 201.) Primarily for majors entering computer-related fields. Ethical and social issues related to the development and use of computer technology. Ethical theory, and social, political, and legal considerations. Scenarios in problem areas: privacy, reliability and risks of complex systems, and responsibility of professionals for applications and consequences of their work. Prerequisite: 106B or X.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:EC-EthicReas, WAY-ER

CS 181W: Computers, Ethics, and Public Policy (WIM)

Writing-intensive version of CS181. Satisfies the WIM requirement for Computer Science and Computer Systems Engineering undergraduates.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:EC-EthicReas, WAY-ER

CS 191: Senior Project

Restricted to Computer Science and Computer Systems Engineering students. Group or individual projects under faculty direction. Register using instructor's section number. A project can be either a significant software application or publishable research. Software application projects include substantial programming and modern user-interface technologies and are comparable in scale to shareware programs or commercial applications. Research projects may result in a paper publishable in an academic journal or presentable at a conference. Required public presentation of final application or research results.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Angst, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Kundaje, A. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Montanari, A. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Pande, V. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Wang, G. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Magness, S. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 191W: Writing Intensive Senior Project (WIM)

Restricted to Computer Science and Computer Systems Engineering students. Writing-intensive version of CS191. Register using the section number of an Academic Council member.
Terms: Aut, Win, Spr | Units: 3-6 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Kundaje, A. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Pande, V. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Wang, G. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Magness, S. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 192: Programming Service Project

Restricted to Computer Science students. Appropriate academic credit (without financial support) is given for volunteer computer programming work of public benefit and educational value.
Terms: Aut, Win, Spr, Sum | Units: 1-4 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 198: Teaching Computer Science

Students lead a discussion section of 106A while learning how to teach a programming language at the introductory level. Focus is on teaching skills, techniques, and course specifics. Application and interview required; see http://cs198.stanford.edu.
Terms: Aut, Win, Spr | Units: 3-4

CS 199: Independent Work

Special study under faculty direction, usually leading to a written report. Letter grade; if not appropriate, enroll in 199P.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Lee, C. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Pande, V. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 199P: Independent Work

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Altman, R. (PI); Angst, R. (PI); Baker, M. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Cheriton, D. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Lee, C. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 202: Law for Computer Science Professionals

Intellectual property law as it relates to computer science including copyright registration, patents, and trade secrets; contract issues such as non-disclosure/non-compete agreements, license agreements, and works-made-for-hire; dispute resolution; and principles of business formation and ownership. Emphasis is on topics of current interest such as open source and the free software movement, peer-to-peer sharing, encryption, data mining, and spam.
Terms: Aut, Win | Units: 1
Instructors: ; Hansen, D. (PI)

CS 207: The Economics of Software

How businesses move software products into the marketplace and how the associated intellectual capital is exploited. The value of creators and managers. Concepts that are outside of the common knowledge of computer scientists such as business terms and spreadsheet computations to quantitatively compare alternatives. Goal is to contribute to informed decision making in high-tech product design, acquisition, production, marketing, selection of business structures, outsourcing, and impact of taxation policies. No specific background required. External experts complement class presentations.
Terms: Aut | Units: 2
Instructors: ; Wiederhold, G. (PI)

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut | Units: 3-4

CS 224N: Natural Language Processing (LINGUIST 284)

Methods for processing human language information and the underlying computational properties of natural languages. Syntactic and semantic processing from linguistic and algorithmic perspectives. Focus is on modern quantitative techniques in NLP: using large corpora, statistical models for acquisition, translation, and interpretation; and representative systems. Prerequisites: CS124 or CS121/221.
Terms: Aut | Units: 3-4
Instructors: ; Manning, C. (PI)

CS 224W: Social and Information Networks

(Formerly 322) How do diseases spread? Who are the influencers? How can we predict friends and enemies in a social network? How information flows and mutates as it is passed through networks? Behind each of these questions there is an intricate wiring diagram, a network, that defines the interactions between the components. And we will never understand these questions unless we understand the networks behind them. The course will cover recent research on the structure and analysis of such large social and information networks and on models and algorithms that abstract their basic properties. Class will explore how to practically analyze large-scale network data and how to reason about it through models for network structure and evolution. Topics include methods for link analysis and network community detection, diffusion and information propagation on the web, virus outbreak detection in networks, and connections with work in the social sciences and economics.
Terms: Aut | Units: 3-4

CS 225A: Experimental Robotics

Hands-on laboratory course experience in robotic manipulation. Topics include robot kinematics, dynamics, control, compliance, sensor-based collision avoidance, and human-robot interfaces. Second half of class is devoted to final projects using various robotic platforms to build and demonstrate new robot task capabilities. Previous projects include the development of autonomous robot behaviors of drawing, painting, playing air hocket, yoyo, basketball, ping-pong or xylophone. Prerequisites: 223A or equivalent.
Terms: Aut, Spr | Units: 3
Instructors: ; Khatib, O. (PI); Choi, I. (GP)

CS 229: Machine Learning

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, model/feature selection, learning theory, VC dimension, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.
Terms: Aut | Units: 3-4

CS 238: Decision Making under Uncertainty (AA 228)

This course is designed to increase awareness and appreciation for why uncertainty matters, particularly for aerospace applications. Introduces decision making under uncertainty from a computational perspective and provides an overview of the necessary tools for building autonomous and decision-support systems. Following an introduction to probabilistic models and decision theory, the course will cover computational methods for solving decision problems with stochastic dynamics, model uncertainty, and imperfect state information. Topics include: Bayesian networks, influence diagrams, dynamic programming, reinforcement learning, and partially observable Markov decision processes. Applications cover: air traffic control, aviation surveillance systems, autonomous vehicles, and robotic planetary exploration. Prerequisites: basic probability and fluency in a high-level programming language.
Terms: Aut | Units: 3-4
Instructors: ; Kochenderfer, M. (PI)

CS 242: Programming Languages

Central concepts in modern programming languages, impact on software development, language design trade-offs, and implementation considerations. Functional, imperative, and object-oriented paradigms. Formal semantic methods and program analysis. Modern type systems, higher order functions and closures, exceptions and continuations. Modularity, object-oriented languages, and concurrency. Runtime support for language features, interoperability, and security issues. Prerequisite: 107, or experience with Lisp, C, and an object-oriented language.
Terms: Aut | Units: 3
Instructors: ; Stefan, D. (PI); Yang, E. (PI)

CS 244B: Distributed Systems

Distributed operating systems and applications issues, emphasizing high-level protocols and distributed state sharing as the key technologies. Topics: distributed shared memory, object-oriented distributed system design, distributed directory services, atomic transactions and time synchronization, application-sufficient consistency, file access, process scheduling, process migration, and storage/communication abstractions on distribution, scale, robustness in the face of failure, and security. Prerequisites: CS 144 and CS 249A.
Terms: Aut | Units: 3

CS 249A: Object-Oriented Programming from a Modeling and Simulation Perspective

Topics: large-scale software development approaches for complex applications, class libraries and frameworks; encapsulation, use of inheritance and dynamic dispatch, design of interfaces and interface/implementation separation, exception handling, smart pointers and reference management, minimalizing dependencies and value-oriented programming. Inheritance: when and why multiple inheritance naming, directories, manager, and disciplined use of design patterns including functors, event notification and iterators. Prerequisites: C, C++, and programming methodology as developed in 106B or X, and 107 (107 may be taken concurrently). Recommended: 193D.
Terms: Aut | Units: 3
Instructors: ; Linton, M. (PI)

CS 259D: Data Mining for Cyber Security

The massive increase in the rate of novel cyber attacks has made data-mining-based techniques a critical component in detecting security threats. The course covers various applications of data mining in computer and network security. Topics include: Overview of the state of information security; malware detection; network and host intrusion detection; web, email, and social network security; authentication and authorization anomaly detection; alert correlation; and potential issues such as privacy issues and adversarial machine learning. Prerequisites: Data mining / machine learning at the level of CS 246 or CS 229; familiarity with computer systems and networks at least at the level of CS 110; CS 140 and CS 144 strongly recommended; CS 155 recommended but not required.
Terms: Aut | Units: 3-4
Instructors: ; Bahmani, B. (PI)

CS 264: Beyond Worst-Case Analysis

This course is motivated by problems for which the traditional worst-case analysis of algorithms fails to differentiate meaningfully between different solutions, or recommends an intuitively "wrong" solution over the "right" one. This course studies systematically alternatives to traditional worst-case analysis that nevertheless enable rigorous and robust guarantees on the performance of an algorithm. Topics include: instance optimality; smoothed analysis; parameterized analysis and condition numbers; models of data (pseudorandomness, locality, diffuse adversaries, etc.); average-case analysis; robust distributional analysis; resource augmentation; planted and semi-random graph models. Motivating problems will be drawn from online algorithms, online learning, constraint satisfaction problems, graph partitioning, scheduling, linear programming, hashing, machine learning, and auction theory. Prerequisites: CS161 (required). CS261 is recommended but not required.
Terms: Aut | Units: 3
Instructors: ; Roughgarden, T. (PI)

CS 265: Randomized Algorithms and Probabilistic Analysis (CME 309)

Randomness pervades the natural processes around us, from the formation of networks, to genetic recombination, to quantum physics. Randomness is also a powerful tool that can be leveraged to create algorithms and data structures which, in many cases, are more efficient and simpler than their deterministic counterparts. This course covers the key tools of probabilistic analysis, and application of these tools to understand the behaviors of random processes and algorithms. Emphasis is on theoretical foundations, though we will apply this theory broadly, discussing applications in machine learning and data analysis, networking, and systems. Topics include tail bounds, the probabilistic method, Markov chains, and martingales, with applications to analyzing random graphs, metric embeddings, random walks, and a host of powerful and elegant randomized algorithms. Prerequisites: CS 161 and STAT 116, or equivalents and instructor consent.
Terms: Aut | Units: 3
Instructors: ; Valiant, G. (PI)

CS 266: Parameterized Algorithms and Complexity

An introduction to the area of parameterized algorithms and complexity, which explores multidimensional methods for measuring the difficulty and feasibility of solving computational problems. Topics include: fixed-parameter tractability (FPT) and its characterizations, FPT algorithms for hard problems, the W-hierarchy (W[1], W[2], W[P], and complete problems for these classes), and the relationships between parameterized questions and classical theory questions. Prerequisites: CS 154 and 161 or the equivalent mathematical maturity.
Terms: Aut | Units: 3
Instructors: ; Williams, R. (PI)

CS 268: Geometric Algorithms

Techniques for design and analysis of efficient geometric algorithms for objects in 2-, 3-, and higher dimensions. Topics: convexity, triangulations and simplicial complexes, sweeping, partitioning, and point location. Voronoi/Delaunay diagrams and their properties. Arrangements of curves and surfaces. Intersection and visibility problems. Geometric searching and optimization. Random sampling methods. Impact of numerical issues in geometric computation. Example applications to robotic motion planning, visibility preprocessing and rendering in graphics, model-based recognition in computer vision, and structural molecular biology. Prerequisite: discrete algorithms at the level of 161. Recommended: 164.
Terms: Aut | Units: 3

CS 273A: A Computational Tour of the Human Genome (BIOMEDIN 273A, DBIO 273A)

Introduction to computational biology through an informatic exploration of the human genome. Topics include: genome sequencing (technologies, assembly, personalized sequencing); functional landscape (genes, gene regulation, repeats, RNA genes, epigenetics); genome evolution (comparative genomics, ultraconservation, co-option). Additional topics may include population genetics, personalized genomics, and ancient DNA. Course includes primers on molecular biology, the UCSC Genome Browser, and text processing languages. Guest lectures from genomic researchers. No prerequisites. See http://cs273a.stanford.edu/.
Terms: Aut | Units: 3

CS 274: Representations and Algorithms for Computational Molecular Biology (BIOE 214, BIOMEDIN 214, GENE 214)

Topics: introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, Gibbs Sampling, basic structural computations on proteins, protein structure prediction, protein threading techniques, homology modeling, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, microarray analysis, machine learning (clustering and classification), and natural language text processing. Prerequisites: programming skills; consent of instructor for 3 units.
Terms: Aut | Units: 3-4

CS 279: Computational Biology: Structure and Organization of Biomolecules and Cells

Computational approaches to understanding the three-dimensional spatial organization of biological systems and how that organization evolves over time. The course will cover cutting-edge research in both physics-based simulations and computational analysis of experimental data, at scales ranging from individual molecules to multiple cells. Prerequisites: elementary programming background (106A or equivalent) and an introductory course in biology or biochemistry.
Terms: Aut | Units: 3
Instructors: ; Dror, R. (PI); Kim, M. (GP)

CS 298: Seminar on Teaching Introductory Computer Science (EDUC 298)

Faculty, undergraduates, and graduate students interested in teaching discuss topics raised by teaching computer science at the introductory level. Prerequisite: consent of instructor.
Terms: Aut | Units: 1

CS 300: Departmental Lecture Series

Priority given to first-year Computer Science Ph.D. students. CS Masters students admitted if space is available. Presentations by members of the department faculty, each describing informally his or her current research interests and views of computer science as a whole.
Terms: Aut | Units: 1
Instructors: ; Dill, D. (PI)

CS 309A: Cloud Computing

For science, engineering, business, medicine, and law students. Cloud computing is bringing information systems out of the back office and making it core to the entire economy. This class is intended for all students who want to begin to understand the implications of this shift in technology. Guest industry experts are public company CEOs who are delivering application, software development, operations management, compute, storage & data center, and network cloud services.
Terms: Aut | Units: 1 | Repeatable for credit
Instructors: ; Chou, T. (PI)

CS 316: Advanced Multi-Core Systems (EE 382E)

In-depth coverage of the architectural techniques used in modern, multi-core chips for mobile and server systems. Advanced processor design techniques (superscalar cores, VLIW cores, multi-threaded cores, energy-efficient cores), cache coherence, memory consistency, vector processors, graphics processors, heterogeneous processors, and hardware support for security and parallel programming. Students will become familiar with complex trade-offs between performance-power-complexity and hardware-software interactions. A central part of CS316 is a project on an open research question on multi-core technologies. Prerequisites: EE 108B. Recommended: CS 149, EE 282.
Terms: Aut | Units: 3

CS 390A: Curricular Practical Training

Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390 A, B, and C may each be taken once.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fischer, M. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Lee, C. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Pande, V. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Sosic, R. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 390B: Curricular Practical Training

Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390A,B,C may each be taken once.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 390C: Curricular Practical Training

Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390A,B,C may each be taken once.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 390P: Part-time Curricular Practical Training

For qualified computer science PhD students only. Permission number required for enrollment; see the CS PhD program administrator in Gates room 196. May be taken just once; not repeatable. Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in research and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. Students on F1 visas should be aware that completing 12 or more months of full-time CPT will make them ineligible for Optional Practical Training (OPT).
Terms: Aut, Win, Spr | Units: 1
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Kundaje, A. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Pande, V. (PI); Parlante, N. (PI); Plotkin, S. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP)

CS 393: Computer Laboratory

For CS graduate students. A substantial computer program is designed and implemented; written report required. Recommended as a preparation for dissertation research. Register using the section number associated with the instructor. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Cheriton, D. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 395: Independent Database Project

For graduate students in Computer Science. Use of database management or file systems for a substantial application or implementation of components of database management system. Written analysis and evaluation required. Register using the section number associated with the instructor. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Cheriton, D. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 399: Independent Project

Letter grade only.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Lee, C. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); MacCartney, B. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Pande, V. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Sosic, R. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Wang, G. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 399P: Independent Project

Graded satisfactory/no credit.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Lee, C. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Shoham, Y. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Wang, G. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 476A: Music, Computing, and Design I: Software Paradigms for Computer Music (MUSIC 256A)

Software design and implementation for computer audio. Strategies, best practices, and tradeoffs in building audio software systems of various sizes (S, M, L, XL), with a focus on interactive (real-time) systems. Lectures examine high-level designs as well as dissect code in a hands-on manner. Course work includes small programming assignments and a final software project. This course is the prerequisite for MUSIC 256B. Prerequisite: experience in C/C++ and/or Java.
Terms: Aut | Units: 1-4
Instructors: ; Wang, G. (PI)

CS 499: Advanced Reading and Research

Letter grade only. Advanced reading and research for CS graduate students. Register using the section number associated with the instructor. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Kundaje, A. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Mackey, L. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Montanari, A. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Saberi, A. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Sosic, R. (PI); Stepp, M. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 499P: Advanced Reading and Research

Graded satisfactory/no credit. Advanced reading and research for CS graduate students. Register using the section number associated with the instructor. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Boyd, S. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Goodman, N. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Kundaje, A. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Mackey, L. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Mitra, S. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Paepcke, A. (PI); Parlante, N. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Re, C. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Saberi, A. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Saxena, A. (PI); Schwarz, K. (PI); Shoham, Y. (PI); Sosic, R. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Valiant, G. (PI); Van Roy, B. (PI); Wang, G. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Williams, V. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 546: Seminar on Liberation Technologies (POLISCI 337S)

This one-unit seminar will present speakers relevant in a variety ofnways to how various forms of information technology are being used tondefend human rights, improve governance, deepen democracy, empower thenpoor, promote economic development, protect the environment, enhancenpublic health, and pursue a variety of other social goods.
Terms: Aut, Win | Units: 1 | Repeatable for credit

CS 547: Human-Computer Interaction Seminar

Weekly speakers on human-computer interaction topics. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

CS 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Cheriton, D. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dwork, C. (PI); Engler, D. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Lam, M. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Mackey, L. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Winograd, T. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 802: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Aiken, A. (PI); Akeley, K. (PI); Altman, R. (PI); Baker, M. (PI); Barbagli, F. (PI); Batzoglou, S. (PI); Bejerano, G. (PI); Bernstein, M. (PI); Blikstein, P. (PI); Boneh, D. (PI); Bradski, G. (PI); Brafman, R. (PI); Cain, J. (PI); Cao, P. (PI); Casado, M. (PI); Cheriton, D. (PI); Cooper, S. (PI); Dally, B. (PI); De-Micheli, G. (PI); Dill, D. (PI); Dror, R. (PI); Dwork, C. (PI); Engler, D. (PI); Ermon, S. (PI); Fedkiw, R. (PI); Feigenbaum, E. (PI); Fikes, R. (PI); Fisher, K. (PI); Fogg, B. (PI); Fox, A. (PI); Garcia-Molina, H. (PI); Genesereth, M. (PI); Gill, J. (PI); Girod, B. (PI); Goel, A. (PI); Golub, G. (PI); Guibas, L. (PI); Hanrahan, P. (PI); Heer, J. (PI); Hennessy, J. (PI); Horowitz, M. (PI); Johari, R. (PI); Johnson, M. (PI); Jurafsky, D. (PI); Katti, S. (PI); Kay, M. (PI); Khatib, O. (PI); Klemmer, S. (PI); Koller, D. (PI); Koltun, V. (PI); Konolige, K. (PI); Kozyrakis, C. (PI); Kundaje, A. (PI); Lam, M. (PI); Landay, J. (PI); Latombe, J. (PI); Leskovec, J. (PI); Levis, P. (PI); Levitt, M. (PI); Levoy, M. (PI); Li, F. (PI); Liang, P. (PI); Mackey, L. (PI); Manna, Z. (PI); Manning, C. (PI); Mazieres, D. (PI); McCarthy, J. (PI); McCluskey, E. (PI); McKeown, N. (PI); Meng, T. (PI); Mitchell, J. (PI); Motwani, R. (PI); Musen, M. (PI); Nass, C. (PI); Nayak, P. (PI); Ng, A. (PI); Nilsson, N. (PI); Olukotun, O. (PI); Ousterhout, J. (PI); Parlante, N. (PI); Pea, R. (PI); Plotkin, S. (PI); Plummer, R. (PI); Prabhakar, B. (PI); Pratt, V. (PI); Raghavan, P. (PI); Rajaraman, A. (PI); Roberts, E. (PI); Rosenblum, M. (PI); Roughgarden, T. (PI); Sahami, M. (PI); Salisbury, J. (PI); Savarese, S. (PI); Shoham, Y. (PI); Thrun, S. (PI); Tobagi, F. (PI); Trevisan, L. (PI); Ullman, J. (PI); Van Roy, B. (PI); Widom, J. (PI); Wiederhold, G. (PI); Williams, R. (PI); Winograd, T. (PI); Winstein, K. (PI); Young, P. (PI); Zelenski, J. (PI); George, S. (GP); Hadding, D. (GP); Hartung, C. (GP); Siroker, M. (GP); Swenson, M. (GP)

CS 183B: How to Start a Startup

The course is designed to be a one-class practical MBA equivalent for engineers that want to start startups. We'll try to cover everything younneed to know other than how to build a product. Topics include: having ideas, getting users, company culture, fundraising, hiring, operations,nmanagements, and more. The format of the class will be guest lectures from experts in each subject. The class will focus more on practical advice than theory, although many speakers will also tell personal stories.
| Units: 2
Instructors: ; Altman, S. (PI)
© Stanford University | Terms of Use | Copyright Complaints