2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 1 of 1 results for: STATS 361: Causal Inference

STATS 361: Causal Inference

This course covers statistical underpinnings of causal inference, with a focus on experimental design and data-driven decision making. Topics include randomization, potential outcomes, observational studies, propensity score methods, matching, double robustness, semiparametric efficiency, treatment heterogeneity, structural models, instrumental variables, principal stratification, mediation, regression discontinuities, synthetic controls, interference, sensitivity analysis, policy learning, dynamic treatment rules, invariant prediction, graphical models, and structure learning. We will also discuss the relevance of optimization and machine learning tools to causal inference. Prerequisite: STATS 300A, or equivalent graduate-level coursework on the theory of statistics.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints