2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

1 - 2 of 2 results for: PHYSICS 25: Modern Physics

PHYSICS 25: Modern Physics

How do the discoveries since the dawn of the 20th century impact our understanding of 21st-century physics? This course introduces the foundations of modern physics: Einstein's theory of special relativity and quantum mechanics. Combining the language of physics with tools from algebra and trigonometry, students gain insights into how the universe works on both the smallest and largest scales. Topics may include atomic, molecular, and laser physics; semiconductors; elementary particles and the fundamental forces; nuclear physics (fission, fusion, and radioactivity); astrophysics and cosmology (the contents and evolution of the universe). Emphasis on applications of modern physics in everyday life, progress made in our understanding of the universe, and open questions that are the subject of active research. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 23 or PHYSICS 23S.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Irwin, K. (PI)

PHYSICS 26: Modern Physics Laboratory

Guided hands-on and simulation-based exploration of concepts in modern physics, including special relativity, quantum mechanics and nuclear physics with an emphasis on student predictions, observations and explanations. Pre- or corequisite: PHYSICS 25.
Terms: Spr | Units: 1
Instructors: Irwin, K. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints