CS 339N: Machine Learning Methods for Neural Data Analysis (NBIO 220, STATS 220, STATS 320)
With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analyzing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks and final project. Prerequisites:
STATS 202 or
CS 229
Terms: Spr
| Units: 3
Filter Results: