2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: CS 234: Reinforcement Learning

CS 234: Reinforcement Learning

To realize the dreams and impact of AI requires autonomous systems that learn to make good decisions. Reinforcement learning is one powerful paradigm for doing so, and it is relevant to an enormous range of tasks, including robotics, game playing, consumer modeling and healthcare. This class will briefly cover background on Markov decision processes and reinforcement learning, before focusing on some of the central problems, including scaling up to large domains and the exploration challenge. One key tool for tackling complex RL domains is deep learning and this class will include at least one homework on deep reinforcement learning. Prerequisites: proficiency in python, CS 229 or equivalents or permission of the instructor; linear algebra, basic probability.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints