CS 103: Mathematical Foundations of Computing
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in firstorder logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and firstorder logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin
more »
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in firstorder logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and firstorder logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the MyhillNerode theorem, contextfree grammars, Turing machines, decidable and recognizable languages, selfreference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take
CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in
CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with
CS103.
Terms: Aut, Win, Spr, Sum

Units: 35

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Fang, F. (PI)
;
Lee, C. (PI)
;
Liu, A. (PI)
;
Schwarz, K. (PI)
;
Alvarez, J. (TA)
;
Brickner, A. (TA)
;
Hoag, E. (TA)
;
Kravitz, J. (TA)
;
Le, T. (TA)
;
Liang, D. (TA)
;
MayerHirshfeld, R. (TA)
;
Melloni, J. (TA)
;
Murphy, D. (TA)
;
Noyola, T. (TA)
;
Saini, D. (TA)
;
Saleh, M. (TA)
;
Smith, R. (TA)
;
Sriram, P. (TA)
;
Valdivia, H. (TA)
;
Zhu, M. (TA)
Filter Results: