2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 4 of 4 results for: CME 204: Partial Differential Equations in Engineering

CME 204: Partial Differential Equations in Engineering (ME 300B)

Geometric interpretation of partial differential equation (PDE) characteristics; solution of first order PDEs and classification of second-order PDEs; self-similarity; separation of variables as applied to parabolic, hyperbolic, and elliptic PDEs; special functions; eigenfunction expansions; the method of characteristics. If time permits, Fourier integrals and transforms, Laplace transforms. Prerequisite: CME 200/ ME 300A, equivalent, or consent of instructor.
Terms: Win | Units: 3

CME 206: Introduction to Numerical Methods for Engineering (ME 300C)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ ME 300A, CME 204/ ME 300B.
Terms: Spr | Units: 3

ENERGY 281: Applied Mathematics in Reservoir Engineering

The philosophy of the solution of engineering problems. Methods of solution of partial differential equations: Laplace transforms, Fourier transforms, wavelet transforms, Green's functions, and boundary element methods. Prerequisites: CME 204 or MATH 131, and consent of instructor.
Terms: Spr | Units: 3

ME 300C: Introduction to Numerical Methods for Engineering (CME 206)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ ME 300A, CME 204/ ME 300B.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints