2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 10 of 11 results for: BIO 82: Genetics

BIO 82: Genetics

The focus of the course is on the basic mechanisms underlying the transmission of genetic information and on the use of genetic analysis to study biological and medical questions. Major topics will include: (1) the use of existing genetic variation in humans and other species to identify genes that play an important role in determining traits and disease-susceptibility, (2) the analysis of mutations in model organisms and their use in the investigation of biological processes and questions and (3) using genetic information for diagnosis and the potential for genetic manipulations to treat disease. Prerequisites: None, but BIO 83 is recommended. Attendance at a discussion section held once a week is mandatory. For logistical questions about the course, please contact Waheeda Khalfan (wkhalfan@stanford.edu).
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIO 111: Microbiology

Introduction to microbiology, with emphasis on bacteria. Topics include the cell structure of microorganisms, gene regulation, bacterial genetics, bacterial evolution and diversity, bacterial development, interaction and communication, bacterial chemotaxis and motility, microbiomes, infectious diseases, bacterial pathogenesis, host defense systems, and viruses. Strongly recommended: molecular biology, biochemistry, genetics or cell biology courses (e.g. BIO 82, 83 or 86).
Terms: Win | Units: 3

BIO 120: Integrative Microbiology (BIO 220)

To live, organisms have to successfully coordinate a conglomerate of different molecular processes in line with available resources and what environmental conditions demand. This course introduces exiting recent advances in understanding this coordination and the link between molecular processes, physiology, and ecology in microbial organisms. Python based "dry lab sessions" complement lectures to promote the interactive exploration of real datasets and introduce the power of quantitative analysis & modeling techniques for obtaining a more integrative understanding of (microbial) life. Prerequisite: MATH 51 or MATH 19, 20,21. Recommended: microbiology (e.g. BIO 62 or 162) and molecular biology/biochemistry/genetics courses (e.g. BIO 82 or 83).
Terms: Win | Units: 3 | Repeatable 2 times (up to 3 units total)

BIO 146: Genes and Disease

Students in this course will uncover key principles of genetics and molecular biology through investigation of case studies of human disease and novel therapeutic approaches in development. This course will require close reading and discussion of primary literature and will emphasize and support the development of critical skills in scientific communication. Students will utilize a variety of mediums to convey scientific information to a range of audiences in a series of projects completed during the quarter. Prerequisites: BIO 82, 83 and 86 or equivalent.
Terms: Spr | Units: 3

BIO 178: Microbiology Literature (BIO 278)

For advanced undergraduates and first-year graduate students. Critical reading of research literature in prokaryotic genetics and molecular biology. Classic and foundational papers in pathogenesis, bacterial and phage genetics, and molecular biology; recent literature on gene regulation. Diverse experimental approaches: biochemistry, genomics, pathogenesis, and cell biology. Prerequisites: undergraduates must have taken BIO 82 (Genetics) and BIO 83 (Biochemistry). Also recommended: BIO 111, BIO 120, CEE 274. Undergraduate enrollment limited to Biology or Bioengineering majors in junior or senior year. Co-term or Ph.D. students in basic life sciences departments such as Biology, Bioengineering, and Genetics may enroll in BIO 278 for graduate credit. Enrollment by permission of professor, apply at https://forms.gle/bP3ikwvWuT4JkcbTA.
Terms: Aut | Units: 3
Instructors: Long, S. (PI)

BIO 187: Mathematical Population Biology (CME 187)

Mathematical models in population biology, in biological areas including demography, ecology, epidemiology, evolution, and genetics. Mathematical approaches include techniques in areas such as combinatorics, differential equations, dynamical systems, linear algebra, probability, and stochastic processes. Math 50 or 60 series is required, and at least two of ( Bio 81, Bio 82, Bio 85) are strongly recommended.
Terms: Win | Units: 3

BIO 220: Integrative Microbiology (BIO 120)

To live, organisms have to successfully coordinate a conglomerate of different molecular processes in line with available resources and what environmental conditions demand. This course introduces exiting recent advances in understanding this coordination and the link between molecular processes, physiology, and ecology in microbial organisms. Python based "dry lab sessions" complement lectures to promote the interactive exploration of real datasets and introduce the power of quantitative analysis & modeling techniques for obtaining a more integrative understanding of (microbial) life. Prerequisite: MATH 51 or MATH 19, 20,21. Recommended: microbiology (e.g. BIO 62 or 162) and molecular biology/biochemistry/genetics courses (e.g. BIO 82 or 83).
Terms: Win | Units: 3 | Repeatable 2 times (up to 3 units total)

BIO 278: Microbiology Literature (BIO 178)

For advanced undergraduates and first-year graduate students. Critical reading of research literature in prokaryotic genetics and molecular biology. Classic and foundational papers in pathogenesis, bacterial and phage genetics, and molecular biology; recent literature on gene regulation. Diverse experimental approaches: biochemistry, genomics, pathogenesis, and cell biology. Prerequisites: undergraduates must have taken BIO 82 (Genetics) and BIO 83 (Biochemistry). Also recommended: BIO 111, BIO 120, CEE 274. Undergraduate enrollment limited to Biology or Bioengineering majors in junior or senior year. Co-term or Ph.D. students in basic life sciences departments such as Biology, Bioengineering, and Genetics may enroll in BIO 278 for graduate credit. Enrollment by permission of professor, apply at https://forms.gle/bP3ikwvWuT4JkcbTA.
Terms: Aut | Units: 3
Instructors: Long, S. (PI)

CME 187: Mathematical Population Biology (BIO 187)

Mathematical models in population biology, in biological areas including demography, ecology, epidemiology, evolution, and genetics. Mathematical approaches include techniques in areas such as combinatorics, differential equations, dynamical systems, linear algebra, probability, and stochastic processes. Math 50 or 60 series is required, and at least two of ( Bio 81, Bio 82, Bio 85) are strongly recommended.
Terms: Win | Units: 3

GENE 247: Genomic approaches to the study of human disease (BIO 247)

This course will cover a range of genetic and genomic approaches to studying human phenotypic variation and disease. We will discuss the genetic basis of Mendelian and complex diseases, as well as clinical applications including prenatal testing, and pediatric and cancer diagnostics. The course will include lectures as well as critical reading and discussion of the primary literature. Prerequisite: BIO 82 or equivalent. Open to advanced undergraduate students.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints