2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
by subject...

1 - 3 of 3 results for: STATS305

STATS 305A: Applied Statistics I

Statistics of real valued responses. Review of multivariate normal distribution theory. Univariate regression. Multiple regression. Constructing features from predictors. Geometry and algebra of least squares: subspaces, projections, normal equations, orthogonality, rank deficiency, Gauss-Markov. Gram-Schmidt, the QR decomposition and the SVD. Interpreting coefficients. Collinearity. Dependence and heteroscedasticity. Fits and the hat matrix. Model diagnostics. Model selection, Cp/AIC and crossvalidation, stepwise, lasso. Multiple comparisons. ANOVA, fixed and random effects. Use of bootstrap and permutations. Emphasis on problem sets involving substantive computations with data sets. Prerequisites: consent of instructor, 116, 200, applied statistics course, CS 106A, MATH 114.
Terms: Aut | Units: 3

STATS 305B: Applied Statistics II

This course uses exponential family structure to motivate generalized linear models and other useful applied techniques including survival analysis methods and Bayes and empirical Bayes analyses. The lectures are based on a forthcoming book whose notes will be distributed. Prerequisites: 305A or consent of the instructor.
Terms: Win | Units: 3

STATS 305C: Applied Statistics III

Methods for multivariate responses. Theory, computation, and practice for multivariate statistical tools. Topics may include multivariate Gaussian models, probabilistic graphical models, MCMC and variational Bayesian inference, dimensionality reduction, principal components, factor analysis, independent components analysis, canonical correlations, linear discriminant analysis, hierarchical clustering, bi-clustering, multidimensional scaling and variants (e.g., Isomap, spectral clustering, t-SNE), matrix completion, topic modeling, and state space models. Extensive work with data involving programming, ideally in Python and/or R. Prerequisites: Stats 305A and Stats 305B or consent of the instructor.
Terms: Spr | Units: 3
Instructors: Hastie, T. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints