## PHYSICS 41: Mechanics

How are motions of objects in the physical world determined by laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. Distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on language of mathematics, particularly vector representations and operations, and calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on inte
more »

How are motions of objects in the physical world determined by laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. Distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on language of mathematics, particularly vector representations and operations, and calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Prerequisite: High school physics and
MATH 20 or
MATH 51 or
CME 100 or equivalent. Minimum co-requisite:
MATH 21 or equivalent.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Lee, Y. (PI)

## PHYSICS 41E: Mechanics, Concepts, Calculations, and Context

Physics 41E (
Physics 41 Extended) is an 5-unit version of
Physics 41 (4 units) for students with little or no high school physics or calculus. Course topics and mathematical complexity are identical to
Physics 41, but the extra classroom time allows students to engage with concepts, develop problem solving skills, and become fluent in mathematical tools that include vector representations and operations, and calculus. The course will use problems drawn from everyday life to explore important physical principles in mechanics, such as Newton's Laws of motion, equations of kinematics, and conservation of energy and momentum. Prerequisite:
Math 19 or equivalent; Co-requisite:
Math 20 or equivalent. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Enrollment is via permission number which can be obtained by filling in the application at
https://stanforduniversity.qualtrics.com/jfe/form/SV_2fNzeSIjoYtKiln.

Terms: Win
| Units: 5
| UG Reqs: WAY-SMA

Instructors:
Church, S. (PI)
;
Wieman, C. (PI)

Filter Results: