2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: ME123

ME 123: Computational Engineering

The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system, require the analysis of its flow and thermal characteristics to ensure optimal performance and safety. The continuing growth ofcomputer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing. Virtual prototyping is a staple of modern engineering practice. This course is an introduction to Computational Engineering using commercial analysis codes, covering both theory and applications. Assuming limited knowledge of computational methods, the course starts with introductory training on the software, using a nseries of lectures and hands-on tutorials. We utilize the ANSYS software suite, which is used across a variety of engineering fields. Herein, the emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using cl more »
The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system, require the analysis of its flow and thermal characteristics to ensure optimal performance and safety. The continuing growth ofcomputer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing. Virtual prototyping is a staple of modern engineering practice. This course is an introduction to Computational Engineering using commercial analysis codes, covering both theory and applications. Assuming limited knowledge of computational methods, the course starts with introductory training on the software, using a nseries of lectures and hands-on tutorials. We utilize the ANSYS software suite, which is used across a variety of engineering fields. Herein, the emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal problems, the course develops the essential concepts of Verification and Validation for engineering simulations, nproviding the basis for assessing the accuracy of the results. Advanced concepts such as the use of turbulence models, user programming and automation for design are also introduced. The course is concluded by a project, in which the students apply the software to solve a industry-inspired problem.
Terms: Spr | Units: 4

ME 170A: Mechanical Engineering Design- Integrating Context with Engineering

First course of two-quarter capstone sequence. Working in project teams, design and develop an engineering system addressing a real-world problem in theme area of pressing societal need. Learn and utilize industry development process: first quarter focuses on establishing requirements and narrowing to top concept. Second quarter emphasizes implementation and testing. Learn and apply professional communication skills, assess ethics. Students must also enroll in ME170b; completion of 170b required to earn grade in 170a. Course sequence fulfills ME WIM requirement. Prerequisites: ENGR15, ME80, ME104 (112), ME131, ME123/151. (Cardinal Course certified by the Haas Center)
Terms: Aut | Units: 4
Instructors: Wood, J. (PI)

ME 170B: Mechanical Engineering Design: Integrating Context with Engineering

Second course of two-quarter capstone sequence. Working in project teams, design and develop an engineering system addressing a real-world problem in theme area of pressing societal need. Learn and utilize industry development process: first quarter focuses on establishing requirements and narrowing to top concept. Second quarter emphasizes implementation and testing. Learn and apply professional communication skills, assess ethics. Students must have completed ME170a; completion of 170b required to earn grade in 170a. Course sequence fulfills ME WIM requirement. Prerequisites: ENGR15, ME80, ME112, ME131, ME123/151. (Cardinal Course certified by the Haas Center)
Terms: Win | Units: 4
Instructors: Wood, J. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints