2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
Browse
by subject...
    Schedule
view...
 

1 - 2 of 2 results for: EE378A

EE 378A: Statistical Signal Processing

Basic concepts of statistical decision theory; Bayes decision theory; HMMs and their state estimation (Forward--backward), Kalman as special case, approximate state estimation (particle filtering, Extended Kalman Filter), unknown parameters; Inference under logarithmic loss, mutual information as a fundamental measure of statistical relevance, properties of mutual information: data processing, chain rules. Directed information. Prediction under logarithmic loss; Context Tree Weighting algorithm; Sequential decision making in general: prediction under general loss functions, causal estimation, estimation of directed information. Non-sequential inference via sequential probability assignments. Universal denoising; Denoising from a decision theoretic perspective: nonparametric function estimation, wavelet shrinkage, density estimation; Estimation of mutual information on large alphabets with applications such as boosting the Chow-Liu algorithm. Estimation of the total variation distance, more »
Basic concepts of statistical decision theory; Bayes decision theory; HMMs and their state estimation (Forward--backward), Kalman as special case, approximate state estimation (particle filtering, Extended Kalman Filter), unknown parameters; Inference under logarithmic loss, mutual information as a fundamental measure of statistical relevance, properties of mutual information: data processing, chain rules. Directed information. Prediction under logarithmic loss; Context Tree Weighting algorithm; Sequential decision making in general: prediction under general loss functions, causal estimation, estimation of directed information. Non-sequential inference via sequential probability assignments. Universal denoising; Denoising from a decision theoretic perspective: nonparametric function estimation, wavelet shrinkage, density estimation; Estimation of mutual information on large alphabets with applications such as boosting the Chow-Liu algorithm. Estimation of the total variation distance, estimate the fundamental limit is easier than to achieve the fundamental limit; Peetre's K-functional and bias analysis: bias correction using jackknife, bootstrap, and Taylor series; Nonparametric functional estimation. Prerequisites: Familiarity with probability theory and linear algebra at the undergraduate level.
Terms: Spr | Units: 3

EE 378B: Inference, Estimation, and Information Processing

Techniques and models for signal, data and information processing, with emphasis on incomplete data, non-ordered index sets and robust low-complexity methods. Linear models; regularization and shrinkage; dimensionality reduction; streaming algorithms; sketching; clustering, search in high dimension; low-rank models; principal component analysis. Applications include: positioning from pairwise distances; distributed sensing; measurement/traffic monitoring in networks; finding communities/clusters in networks; recommendation systems; inverse problems. Prerequisites: EE278 and EE263 or equivalent. Recommended but not required: EE378A
Last offered: Winter 2021
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints