2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 7 of 7 results for: CS148

CS 148: Introduction to Computer Graphics and Imaging

This is the introductory prerequisite course in the computer graphics sequence which introduces students to the technical concepts behind creating synthetic computer generated images. The beginning of the course focuses on using Blender to create visual imagery, as well as an understanding of the underlying mathematical concepts including triangles, normals, interpolation, texture mapping, bump mapping, etc. Then we move on to a more fundamental understanding of light and color, as well as how it impacts computer displays and printers. From this we discuss more thoroughly how light interacts with the environment, and we construct engineering models such as the BRDF and discuss various simplifications into more basic lighting and shading models. Finally, we discuss ray tracing technology for creating virtual images, while drawing parallels between ray tracers and real world cameras in order to illustrate various concepts. Anti-aliasing and acceleration structures are also discussed. The more »
This is the introductory prerequisite course in the computer graphics sequence which introduces students to the technical concepts behind creating synthetic computer generated images. The beginning of the course focuses on using Blender to create visual imagery, as well as an understanding of the underlying mathematical concepts including triangles, normals, interpolation, texture mapping, bump mapping, etc. Then we move on to a more fundamental understanding of light and color, as well as how it impacts computer displays and printers. From this we discuss more thoroughly how light interacts with the environment, and we construct engineering models such as the BRDF and discuss various simplifications into more basic lighting and shading models. Finally, we discuss ray tracing technology for creating virtual images, while drawing parallels between ray tracers and real world cameras in order to illustrate various concepts. Anti-aliasing and acceleration structures are also discussed. The final class project consists of building out a ray tracer to create a visually compelling image. Starter codes and code bits will be provided here and there to aid in development, but this class focuses on what you can do with the code as opposed to what the code itself looks like. Therefore grading is weighted towards in person "demos" of the code in action - creativity and the production of impressive visual imagery are highly encouraged.This is the first course in the computer graphics sequence at Stanford. Topics include: Scanline Rendering; Triangles; Rasterization; Transformations; Shading; Triangle Meshes; Subdivision; Marching Cubes; Textures; Light; Color; Cameras; Displays; Tone Mapping; BRDF; Lighting Equation; Global Illumination; Radiosity; Ray Tracing; Acceleration Structures; Sampling; Antialiasing; Reflection; Transmission; Depth of Field; Motion Blur; Monte Carlo; Bidirectional Ray Tracing; Light Maps.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-CE

CS 348E: Character Animation: Modeling, Simulation, and Control of Human Motion

This course introduces technologies and mathematical tools for simulating, modeling, and controlling human/animal movements. Students will be exposed to integrated knowledge and techniques across computer graphics, robotics, machine learning and biomechanics. The topics include numerical integration, 3D character modeling, keyframe animation, skinning/rigging, multi-body dynamics, human kinematics, muscle dynamics, trajectory optimization, learning policies for motor skills, and motion capture. Students who successfully complete this course will be able to use and modify physics simulator for character animation or robotic applications, to design/train control policies for locomotion or manipulation tasks on virtual agents, and to leverage motion capture data for synthesizing realistic virtual humans. The evaluation of this course is based on three assignments and an open-ended research project. Recommended Prerequisite: CS148 or CS205A
Last offered: Spring 2023

CS 348I: Computer Graphics in the Era of AI

This course introduces deep learning methods and AI technologies applied to four main areas of Computer Graphics: rendering, geometry, animation, and imaging. We will study a wide range of problems on content creation for images, shapes, and animations, recently advanced by deep learning techniques. For each problem, we will understand its conventional solutions, study the state-of-the-art learning-based approaches, and critically evaluate their results as well as the impacts to researchers and practitioners in Computer Graphics. The topics include differentiable rendering/neural rendering, BRDF estimation, texture synthesis, denoising, procedural modeling, view synthesis, colorization, style transfer, motion synthesis, differentiable physics simulation, and reinforcement learning. Through programming projects and homework, students who successfully complete this course will be able to use neural rendering algorithms for image manipulation, apply neural procedural modeling for shape and scene synthesis, exploit data-driven methods for simulating physical phenomena, and implement policy learning algorithms for creating character animation. Recommended Prerequisites: CS148, CS231N
Terms: Win | Units: 3-4

CS 348N: Neural Models for 3D Geometry

Course Description: Generation of high-quality 3D models and scenes by leveraging machine learning tools and approaches. Survey of geometry representations. Public 3D object and scene data sets. Neural architectures for geometry, including deep architectures for point clouds and meshes. Generative models for 3D: autoencoders, GANs, neural implicits, neural ODEs, autoregressive models. Conditional generation based on images or partial geometry. Variation generation. Evaluation metrics for content generation. Use of synthetic data in ML training pipelines. Prerequisites: CS148 and the rudiments of deep learning. Recommended: CS229.
Last offered: Spring 2023

CS 448B: Data Visualization (EDUC 458, SYMSYS 195V)

Techniques and algorithms for creating effective visualizations based on principles from graphic design, visual art, perceptual psychology, and cognitive science. Topics: graphical perception, data and image models, visual encoding, graph and tree layout, color, animation, interaction techniques, automated design. Lectures, reading, and project. There are no official prerequisites for the class, but familiarity with the material in CS147, CS148 and CS142 is especially useful. Most important is a basic working knowledge of, or willingness to learn, web- programming, especially JavaScript, Vega-Lite and D3.js.
Terms: Aut | Units: 3-4 | Repeatable for credit

EDUC 458: Data Visualization (CS 448B, SYMSYS 195V)

Techniques and algorithms for creating effective visualizations based on principles from graphic design, visual art, perceptual psychology, and cognitive science. Topics: graphical perception, data and image models, visual encoding, graph and tree layout, color, animation, interaction techniques, automated design. Lectures, reading, and project. There are no official prerequisites for the class, but familiarity with the material in CS147, CS148 and CS142 is especially useful. Most important is a basic working knowledge of, or willingness to learn, web- programming, especially JavaScript, Vega-Lite and D3.js.
Last offered: Winter 2023 | Repeatable for credit

SYMSYS 195V: Data Visualization (CS 448B, EDUC 458)

Techniques and algorithms for creating effective visualizations based on principles from graphic design, visual art, perceptual psychology, and cognitive science. Topics: graphical perception, data and image models, visual encoding, graph and tree layout, color, animation, interaction techniques, automated design. Lectures, reading, and project. There are no official prerequisites for the class, but familiarity with the material in CS147, CS148 and CS142 is especially useful. Most important is a basic working knowledge of, or willingness to learn, web- programming, especially JavaScript, Vega-Lite and D3.js.
Last offered: Winter 2023 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints