2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 7 of 7 results for: CS109

CS 21SI: AI for Social Good

Students will learn about and apply cutting-edge artificial intelligence techniques to real-world social good spaces (such as healthcare, government, education, and environment). Taught jointly by CS+Social Good and the Stanford AI Group, the aim of the class is to empower students to apply these techniques outside of the classroom. The class will focus on techniques from machine learning and deep learning, including regression, support vector machines (SVMs), neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). The course alternates between lectures on machine learning theory and discussions with invited speakers, who will challenge students to apply techniques in their social good domains. Students complete weekly coding assignments reinforcing machine learning concepts and applications. Prerequisites: programming experience at the level of CS107, mathematical fluency at the level of CS103, comfort with probability at the level of CS109 (or equivalent). Application required for enrollment.
Terms: Spr | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Piech, C. (PI)

CS 109: Introduction to Probability for Computer Scientists

Topics include: counting and combinatorics, random variables, conditional probability, independence, distributions, expectation, point estimation, and limit theorems. Applications of probability in computer science including machine learning and the use of probability in the analysis of algorithms. Prerequisites: 103, 106B or X, multivariate calculus at the level of MATH 51 or CME 100 or equivalent.
Terms: Aut, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

CS 124: From Languages to Information (LINGUIST 180, LINGUIST 280)

Extracting meaning, information, and structure from human language text, speech, web pages, social networks. Methods include: string algorithms, edit distance, language modeling, the noisy channel, machine learning classifiers, inverted indices, collaborative filtering, neural embeddings, PageRank. Applications such as question answering, sentiment analysis, information retrieval, text classification, social network models, spell checking, recommender systems, chatbots. Prerequisites: CS103, CS107, CS109.
Terms: Win | Units: 3-4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

CS 250: Algebraic Error Correcting Codes (EE 387)

Introduction to the theory of error correcting codes, emphasizing algebraic constructions, and diverse applications throughout computer science and engineering. Topics include basic bounds on error correcting codes; Reed-Solomon and Reed-Muller codes; list-decoding, list-recovery and locality. Applications may include communication, storage, complexity theory, pseudorandomness, cryptography, streaming algorithms, group testing, and compressed sensing. Prerequisites: Linear algebra, basic probability (at the level of, say, CS109, CME106 or EE178) and "mathematical maturity" (students will be asked to write proofs). Familiarity with finite fields will be helpful but not required.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

EE 387: Algebraic Error Correcting Codes (CS 250)

Introduction to the theory of error correcting codes, emphasizing algebraic constructions, and diverse applications throughout computer science and engineering. Topics include basic bounds on error correcting codes; Reed-Solomon and Reed-Muller codes; list-decoding, list-recovery and locality. Applications may include communication, storage, complexity theory, pseudorandomness, cryptography, streaming algorithms, group testing, and compressed sensing. Prerequisites: Linear algebra, basic probability (at the level of, say, CS109, CME106 or EE178) and "mathematical maturity" (students will be asked to write proofs). Familiarity with finite fields will be helpful but not required.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

LINGUIST 180: From Languages to Information (CS 124, LINGUIST 280)

Extracting meaning, information, and structure from human language text, speech, web pages, social networks. Methods include: string algorithms, edit distance, language modeling, the noisy channel, machine learning classifiers, inverted indices, collaborative filtering, neural embeddings, PageRank. Applications such as question answering, sentiment analysis, information retrieval, text classification, social network models, spell checking, recommender systems, chatbots. Prerequisites: CS103, CS107, CS109.
Terms: Win | Units: 3-4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

LINGUIST 280: From Languages to Information (CS 124, LINGUIST 180)

Extracting meaning, information, and structure from human language text, speech, web pages, social networks. Methods include: string algorithms, edit distance, language modeling, the noisy channel, machine learning classifiers, inverted indices, collaborative filtering, neural embeddings, PageRank. Applications such as question answering, sentiment analysis, information retrieval, text classification, social network models, spell checking, recommender systems, chatbots. Prerequisites: CS103, CS107, CS109.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints