2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 33 results for: CS106A

AA 174B: Principles of Robot Autonomy II (AA 274B, CS 237B, EE 260B)

This course teaches advanced principles for endowing mobile autonomous robots with capabilities to autonomously learn new skills and to physically interact with the environment and with humans. It also provides an overview of different robot system architectures. Concepts that will be covered in the course are: Reinforcement Learning and its relationship to optimal control, contact and dynamics models for prehensile and non-prehensile robot manipulation, imitation learning and human intent inference, as well as different system architectures and their verification. Students will earn the theoretical foundations for these concepts and implementnthem on mobile manipulation platforms. In homeworks, the Robot Operating System (ROS) will be used extensively for demonstrations and hands-on activities. Prerequisites: CS106A or equivalent, CME 100 or equivalent (for linear algebra), CME 106 or equivalent (for probability theory), and AA 171/274.
Terms: Win | Units: 3-4

AA 274B: Principles of Robot Autonomy II (AA 174B, CS 237B, EE 260B)

This course teaches advanced principles for endowing mobile autonomous robots with capabilities to autonomously learn new skills and to physically interact with the environment and with humans. It also provides an overview of different robot system architectures. Concepts that will be covered in the course are: Reinforcement Learning and its relationship to optimal control, contact and dynamics models for prehensile and non-prehensile robot manipulation, imitation learning and human intent inference, as well as different system architectures and their verification. Students will earn the theoretical foundations for these concepts and implementnthem on mobile manipulation platforms. In homeworks, the Robot Operating System (ROS) will be used extensively for demonstrations and hands-on activities. Prerequisites: CS106A or equivalent, CME 100 or equivalent (for linear algebra), CME 106 or equivalent (for probability theory), and AA 171/274.
Terms: Win | Units: 3-4

BIOMEDIN 210: Modeling Biomedical Systems: Ontology, Terminology, Problem Solving (CS 270)

Methods for modeling biomedical systems and for building model-based software systems. Emphasis is on intelligent systems for decision support and Semantic Web applications. Topics: knowledge representation, controlled terminologies, ontologies, reusable problem solvers, and knowledge acquisition. Students learn about current trends in the development of advanced biomedical software systems and acquire hands-on experience with several systems and tools. Prerequisites: CS106A, basic familiarity with biology, probability, and logic.
Terms: Win | Units: 3

BIOMEDIN 221: Machine Learning Approaches for Data Fusion in Biomedicine

Vast amounts of biomedical data are now routinely available for patients, raging from genomic data, to radiographic images and electronic health records. AI and machine learning are increasingly used to enable pattern discover to link such data for improvements in patient diagnosis, prognosis and tailoring treatment response. Yet, few studies focus on how to link different types of biomedical data in synergistic ways, and to develop data fusion approaches for improved biomedical decision support. This course will describe approaches for multi-omics, multi-modal and multi-scale data fusion of biomedical data in the context of biomedical decision support. Prerequisites: CS106A or equivalent, Stats 60 or equivalent.
Terms: Aut | Units: 2

CME 151A: Interactive Data Visualization in D3

This four-week short course introduces D3, a powerful tool for creating interactive data visualizations on the web (d3js.org). The class is geared toward scientists and engineers who want to better communicate their personal projects and research through visualizations on the web. The class will cover the basics of D3: inputting data, creating scales and axes, and adding transitions and interactivity, as well as some of the most used libraries: stack, cluster and force layouts. The class will be based on short workshops and a final project. A background in programming methodology at the level of CS106A is assumed. The course will make use of Javascript, experience is recommended but not necessary.
Last offered: Autumn 2018

CME 193: Introduction to Scientific Python

This short course runs for the first four weeks of the quarter. It is recommended for students who are familiar with programming at least at the level of CS106A and want to translate their programming knowledge to Python with the goal of becoming proficient in the scientific computing and data science stack. Lectures will be interactive with a focus on real world applications of scientific computing. Technologies covered include Numpy, SciPy, Pandas, Scikit-learn, and others. Topics will be chosen from Linear Algebra, Optimization, Machine Learning, and Data Science. Prior knowledge of programming will be assumed, and some familiarity with Python is helpful, but not mandatory.
Terms: Aut, Win, Spr | Units: 1

CME 250A: Machine Learning on Big Data

A short course presenting the application of machine learning methods to large datasets.Topics include: brief review of the common issues of machine learning, such as, memorizing/overfitting vs learning, test/train splits, feature engineering, domain knowledge, fast/simple/dumb learners vs slow/complex/smart learners; moving your model from your laptop into a production environment using Python (scikit) or R on small data (laptop sized) at first; building math clusters using the open source H2O product to tackle Big Data, and finally to some model building on terabyte sized datasets. Prereqresites: basic knowledge of statistics, matrix algebra, and unix-like operating systems; basic file and text manipulation skills with unix tools: pipes, cut, paste, grep, awk, sed, sort, zip; programming skill at the level of CME211 or CS106A.
Last offered: Spring 2016

COMM 180: Ethics, Public Policy, and Technological Change (CS 182, ETHICSOC 182, PHIL 82, POLISCI 182, PUBLPOL 182)

Examination of recent developments in computing technology and platforms through the lenses of philosophy, public policy, social science, and engineering. Course is organized around four main units: algorithmic decision-making and bias; data privacy and civil liberties; artificial intelligence and autonomous systems; and the power of private computing platforms. Each unit considers the promise, perils, rights, and responsibilities at play in technological developments. Prerequisite: CS106A.
Terms: Win | Units: 5 | UG Reqs: WAY-ER

CS 100A: Problem-solving Lab for CS106A

Additional problem solving practice for the introductory CS course CS 106A. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106A required.
Terms: Aut, Win, Spr | Units: 1

CS 101: Introduction to Computing Principles

Introduces the essential ideas of computing: data representation, algorithms, programming "code", computer hardware, networking, security, and social issues. Students learn how computers work and what they can do through hands-on exercises. In particular, students will see the capabilities and weaknesses of computer systems so they are not mysterious or intimidating. Course features many small programming exercises, although no prior programming experience is assumed or required. CS101 is not a complete programming course such as CS106A. CS101 is effectively an alternative to CS105. A laptop computer is recommended for the in-class exercises.
Last offered: Autumn 2018 | UG Reqs: GER:DB-EngrAppSci, WAY-FR
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints