2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: CHEM371

CHEM 371: Time-dependent statistical mechanics I

First of a two-quarter sequence on the extension of the principles of statistical thermodynamics to systems away from equilibrium. We will explore the connection between the observable properties of such systems and the properties of their microscopic constituents. It will introduce students to many of the theoretical tools that researchers use to understand different kinds of time-dependent phenomena. The sequence will include coverage of the following topics: Phase space and the Liouville equation; equilibrium time correlation functions (TCFs); simple models of TCFs; linear response theory and transport coefficients; projection operators and generalized equations of motion; functional calculus and the Fokker-Planck, Langevin and generalized Langevin equations; chemical reaction dynamics and the Kramers equation; fluctuation theorems and non-equilibrium work relations; path integrals in the study of stochastic processes. Prerequisites: CHEM 175 or CHEM 273 or equivalent course in equilibrium statistical mechanics.
Terms: Win | Units: 3
Instructors: Cherayil, B. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints