2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

1 - 3 of 3 results for: CEE261

CEE 261A: The Atmospheric Boundary Layer: Fundamental Physics and Modeling

An introduction to the Atmospheric Boundary Layer (ABL), including measurements and simulations of ABL flows. Wind and flow, turbulent transport, buoyancy and virtual potential temperature, the diurnal cycle. Derivation of the governing equations, simplifications and assumptions. Turbulence kinetic energy and its budget, ABL stability, the Richardson number and the Obukhov length. Analysis of boundary layer turbulence. Overview of field and wind tunnel measurement techniques, and of computational models from meso- to micro-scale. a Discussion of micro-scale applications, including pedestrian wind comfort, pollutant dispersion and wind loading, and an introduction to uncertainty quantification for ABL flows. Prerequisites: Knowledge of fluid mechanics.
Terms: Aut | Units: 3

CEE 261C: Wind Engineering for Sustainable Cities (CEE 161C)

An introduction to structural and environmental wind engineering for the design of sustainable buildings and cities, covering the physics and analysis of wind loading, urban flow and dispersion, and natural ventilation. Topics include: the atmospheric boundary layer and design wind speeds; bluff body aerodynamics; calculating design wind loads from building codes, wind tunnel experiments or computational fluid dynamics; analyzing pedestrian wind comfort and pollutant dispersion; and the design and analysis of natural ventilation systems using envelope models, scale modeling, full-scale measurements, and computational fluid dynamics. Measurement and simulation data of the flow on Stanford¿s Engineering Quad and in the Y2E2 building will be used throughout the course to illustrate the different concepts and methods.
Terms: Spr | Units: 3
Instructors: Gorle, C. (PI)

CEE 261I: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, EARTHSYS 146A, ESS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints