2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
by subject...
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 3 of 3 results for: BIOE44

BIOE 44: Fundamentals for Engineering Biology Lab

An introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lectures cover advances in the field of synthetic biology with emphasis on genetic engineering, CRISPR gene editing technology, the DIY bio movement, plasmid design, gene synthesis, genetic circuits, safety and bio ethics. At-home lab modules will teach students how to isolate DNA from living matter, make genetic alterations by plasmid transformations and introduce students to experimental design. During the final weeks of the course students work in groups to design a DNA device. Group projects will build upon current research including: gene and genome engineering via decoupled design, component engineering with a focus on molecular design and quantitative analysis of experiments, device and system engineering using abstracted genetically encoded objects, and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83.
Terms: Aut, Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 141B: Senior Capstone Design II

Lecture/Lab. Second course of two-quarter capstone sequence. Team based project introduces students to the process of designing new biological technologies to address societal needs. Emphasis is on implementing and testing the design from the first quarter with the at least one round of prototype iteration. Guest lectures and practical demonstrations are incorporated. Prerequisites: BIOE123 and BIOE44. This course is open only to seniors in the undergraduate Bioengineering program. IMPORTANT NOTE: class meets in Shriram 112.
Terms: Win | Units: 4

BIOE 244: Advanced Frameworks and Approaches for Engineering Integrated Genetic Systems

Concepts and techniques for the design and implementation of engineered genetic systems. Topics covered include the quantitative exploration of tools that support (a) molecular component engineering, (b) abstraction and composition of functional genetic devices, (c) use of control and dynamical systems theory in device and systems design, (d) treatment of molecular "noise", (e) integration of DNA-encoded programs within cellular chassis, (f) designing for evolution, and (g) the use of standards in measurement, genetic layout architecture, and data exchange. Prerequisites: CME104, CME106, CHEM 33, BIO41, BIO42, BIOE41, BIOE42, and BIOE44 (or equivalents), or permission of the instructors.
Last offered: Spring 2019
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints