2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 2 of 2 results for: STATS 209: Introduction to Causal Inference

STATS 209: Introduction to Causal Inference

This course introduces the fundamental ideas and methods in causal inference, with examples drawn from education, economics, medicine, and digital marketing. Topics include potential outcomes, randomization, observational studies, matching, covariate adjustment, AIPW, heterogeneous treatment effects, instrumental variables, regression discontinuity, and synthetic controls. Prerequisites: basic probability and statistics, familiarity with R.
Terms: Aut | Units: 3

STATS 209B: Applications of Causal Inference Methods (EDUC 260A, EPI 239)

See http://rogosateaching.com/stat209/. Application of potential outcomes formulation for causal inference to research settings including: mediation, compliance adjustments, time-1 time-2 designs, encouragement designs, heterogeneous treatment effects, aggregated data, instrumental variables, analysis of covariance regression adjustments, and implementations of matching methods. Prerequisite: an introduction to causal inference methods such as STATS209.
Terms: Win | Units: 2
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints