2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 10 of 14 results for: STATS 116: Theory of Probability

CS 229: Machine Learning (STATS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, deep learning, model/feature selection, learning theory, ML advice, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: knowledge of basic computer science principles and skills at a level sufficient to write a reasonably non-trivial computer program in Python/NumPy to the equivalency of CS106A, CS106B, or CS106X, familiarity with probability theory to the equivalency of CS 109, MATH151, or STATS 116, and familiarity with multivariable calculus and linear algebra to the equivalency of MATH51 or CS205.
Terms: Aut, Spr, Sum | Units: 3-4

CS 229M: Machine Learning Theory (STATS 214)

How do we use mathematical thinking to design better machine learning methods? This course focuses on developing mathematical tools for answering these questions. This course will cover fundamental concepts and principled algorithms in machine learning, particularly those that are related to modern large-scale non-linear models. The topics include concentration inequalities, generalization bounds via uniform convergence, non-convex optimization, implicit regularization effect in deep learning, and unsupervised learning and domain adaptations. nnPrerequisites: linear algebra ( MATH 51 or CS 205), probability theory ( STATS 116, MATH 151 or CS 109), and machine learning ( CS 229, STATS 229, or STATS 315A).
Terms: Aut | Units: 3

CS 339N: Machine Learning Methods for Neural Data Analysis (NBIO 220, STATS 220, STATS 320)

With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analysing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks more »
With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analysing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks and final project.This course is similar to STATS215: Statistical Models in Biology and STATS366: Modern Statistics for Modern Biology, but it is specifically focused on statistical machine learning methods for neuroscience data. Prerequisites: Students should be comfortable with basic probability ( STATS 116) and statistics (at the level of STATS 200). This course will place a heavy emphasis on implementing models and algorithms, so coding proficiency is required.
Last offered: Winter 2021

MATH 230A: Theory of Probability I (STATS 310A)

Mathematical tools: sigma algebras, measure theory, connections between coin tossing and Lebesgue measure, basic convergence theorems. Probability: independence, Borel-Cantelli lemmas, almost sure and Lp convergence, weak and strong laws of large numbers. Large deviations. Weak convergence; central limit theorems; Poisson convergence; Stein's method. Prerequisites: STATS 116, MATH 171.
Terms: Aut | Units: 3

NBIO 220: Machine Learning Methods for Neural Data Analysis (CS 339N, STATS 220, STATS 320)

With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analysing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks more »
With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analysing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks and final project.This course is similar to STATS215: Statistical Models in Biology and STATS366: Modern Statistics for Modern Biology, but it is specifically focused on statistical machine learning methods for neuroscience data. Prerequisites: Students should be comfortable with basic probability ( STATS 116) and statistics (at the level of STATS 200). This course will place a heavy emphasis on implementing models and algorithms, so coding proficiency is required.
Last offered: Winter 2021

STATS 116: Theory of Probability

Probability spaces as models for phenomena with statistical regularity. Discrete spaces (binomial, hypergeometric, Poisson). Continuous spaces (normal, exponential) and densities. Random variables, expectation, independence, conditional probability. Introduction to the laws of large numbers and central limit theorem. Prerequisites: MATH 52 and familiarity with infinite series, or equivalent. Please note that students must enroll in one section in addition to the main lecture.
Terms: Aut, Spr, Sum | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

STATS 214: Machine Learning Theory (CS 229M)

How do we use mathematical thinking to design better machine learning methods? This course focuses on developing mathematical tools for answering these questions. This course will cover fundamental concepts and principled algorithms in machine learning, particularly those that are related to modern large-scale non-linear models. The topics include concentration inequalities, generalization bounds via uniform convergence, non-convex optimization, implicit regularization effect in deep learning, and unsupervised learning and domain adaptations. nnPrerequisites: linear algebra ( MATH 51 or CS 205), probability theory ( STATS 116, MATH 151 or CS 109), and machine learning ( CS 229, STATS 229, or STATS 315A).
Terms: Aut | Units: 3

STATS 220: Machine Learning Methods for Neural Data Analysis (CS 339N, NBIO 220, STATS 320)

With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analysing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks more »
With modern high-density electrodes and optical imaging techniques, neuroscientists routinely measure the activity of hundreds, if not thousands, of cells simultaneously. Coupled with high-resolution behavioral measurements, genetic sequencing, and connectomics, these datasets offer unprecedented opportunities to learn how neural circuits function. This course will study statistical machine learning methods for analysing such datasets, including: spike sorting, calcium deconvolution, and voltage smoothing techniques for extracting relevant signals from raw data; markerless tracking methods for estimating animal pose in behavioral videos; network models for connectomics and fMRI data; state space models for analysis of high-dimensional neural and behavioral time-series; point process models of neural spike trains; and deep learning methods for neural encoding and decoding. We will develop the theory behind these models and algorithms and then apply them to real datasets in the homeworks and final project.This course is similar to STATS215: Statistical Models in Biology and STATS366: Modern Statistics for Modern Biology, but it is specifically focused on statistical machine learning methods for neuroscience data. Prerequisites: Students should be comfortable with basic probability ( STATS 116) and statistics (at the level of STATS 200). This course will place a heavy emphasis on implementing models and algorithms, so coding proficiency is required.
Last offered: Winter 2021

STATS 229: Machine Learning (CS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, deep learning, model/feature selection, learning theory, ML advice, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: knowledge of basic computer science principles and skills at a level sufficient to write a reasonably non-trivial computer program in Python/NumPy to the equivalency of CS106A, CS106B, or CS106X, familiarity with probability theory to the equivalency of CS 109, MATH151, or STATS 116, and familiarity with multivariable calculus and linear algebra to the equivalency of MATH51 or CS205.
Terms: Aut, Spr, Sum | Units: 3-4

STATS 270: A Course in Bayesian Statistics (STATS 370)

This course will treat Bayesian statistics at a relatively advanced level. Assuming familiarity with standard probability and multivariate distribution theory, we will provide a discussion of the mathematical and theoretical foundation for Bayesian inferential procedures. In particular, we will examine the construction of priors and the asymptotic properties of likelihoods and posterior distributions. The discussion will include but will not be limited to the case of finite dimensional parameter space. There will also be some discussions on the computational algorithms useful for Bayesian inference. Prerequisites: Stats 116 or equivalent probability course, plus basic programming knowledge; basic calculus, analysis and linear algebra strongly recommended; Stats 200 or equivalent statistical theory course desirable.
Terms: Spr | Units: 3
Instructors: Wong, W. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints