2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: POLISCI251A

POLISCI 251A: Introduction to Machine Learning for Social Scientists

This course introduces techniques to collect, analyze, and utilize large collections of data for social science inferences. The ultimate goal of the course is to familiarize students to modern machine learning techniques and provide the skills necessary to apply these methods widely. Students will leave the course equipped with a broad understanding of machine learning and on how to continue building new skills. This is an introductory course, so most the lectures and problem sets will be focused on the intuition and the mechanics behind machine learning concepts rather than the mathematical fundamentals. There are no formal prerequisites for the course, but calculus and introductory statistics are strongly recommended. Students are not expected to have any programming knowledge, and the course will be centered around bite-size assignments that will help build R coding and statistical skills from scratch.
Terms: not given this year, last offered Summer 2018 | Units: 4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints