## PHYSICS 130: Quantum Mechanics I

The origins of quantum mechanics and wave mechanics. Schrödinger equation and solutions for one-dimensional systems. Commutation relations. Generalized uncertainty principle. Time-energy uncertainty principle. Separation of variables and solutions for three-dimensional systems; application to hydrogen atom. Spherically symmetric potentials and angular momentum eigenstates. Spin angular momentum. Addition of angular momentum. Prerequisites:
PHYSICS 65 or
PHYSICS 70 and
PHYSICS 111 or
MATH 131P or
MATH 173.
MATH 173 can be taken concurrently. Pre- or corequisites:
PHYSICS 120.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

## PHYSICS 170: Thermodynamics, Kinetic Theory, and Statistical Mechanics I

Basic probability and statistics for random processes such as random walks. The derivation of laws of thermodynamics from basic postulates; the determination of the relationship between atomic substructure and macroscopic behavior of matter. Temperature; equations of state, heat, internal energy, equipartition; entropy, Gibbs paradox; equilibrium and reversibility; heat engines; applications to various properties of matter; absolute zero and low-temperature phenomena. Distribution functions, fluctuations, the partition function for classical and quantum systems, irreversible processes. Pre- or corequisite:
PHYSICS 130.

Terms: Aut
| Units: 4

## PHYSICS 470: Topics in Modern Condensed Matter Theory I: Many Body Quantum Dynamics

Many body quantum systems can display rich emergent dynamical phenomena far from thermal equilibrium, whose understanding represents an exciting frontier of research at the interface of condensed matter, statistical physics, high energy theory and quantum information. This course is intended to serve as an introduction to this active research area, assuming only a knowledge of quantum mechanics and statistical physics. Topics covered include: quantum thermalization, many-body localization, quantum entanglement and its dynamics, tensor network methods, dynamical quantum phases and phase transitions, and Floquet theory. Prerequisites:
PHYSICS 113,
PHYSICS 130,
PHYSICS 131,
PHYSICS 170, and
PHYSICS 171.

Terms: Spr
| Units: 3
| Repeatable for credit

Instructors:
Khemani, V. (PI)

Filter Results: