2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
by subject...
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 3 of 3 results for: MS&E 120: Introduction to Probability

MS&E 120: Introduction to Probability

Probability is the foundation behind many important disciplines including statistics, machine learning, risk analysis, stochastic modeling and optimization. This course provides an in-depth undergraduate-level introduction to fundamental ideas and tools of probability. Topics include: the foundations (sample spaces, random variables, probability distributions, conditioning, independence, expectation, variance), a systematic study of the most important univariate and multivariate distributions (Normal, Multivariate Normal, Binomial, Poisson, etc...), as well as a peek at some limit theorems (basic law of large numbers and central limit theorem) and, time permitting, some elementary markov chain theory. Prerequisite: CME 100 or MATH 51.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

MS&E 232: Introduction to Game Theory

Examines foundations of strategic environments with a focus on game theoretic analysis. Provides a solid background to game theory as well as topics in behavioral game theory and the design of marketplaces. Introduction to analytic tools to model and analyze strategic interactions as well as engineer the incentives and rules in marketplaces to obtain desired outcomes. Technical material includes non-cooperative and cooperative games, behavioral game theory, equilibrium analysis, repeated games, social choice, mechanism and auction design, and matching markets. Exposure to a wide range of applications. Lectures, presentations, and discussion. Prerequisites: basic mathematical maturity at the level of Math 51, and probability at the level of MS&E 120 or EE 178.
Terms: Spr | Units: 3

MS&E 232H: Introduction to Game Theory (Accelerated)

Game theory uses mathematical models to study strategic interactions and situations of conflict and cooperation between rational decision-makers. This course provides an accelerated introduction to tools, models and computation in non-cooperative and cooperative game theory. Technical material includes normal and extensive form games, zero-sum games, Nash equilibrium and other solution concepts, repeated games, games with incomplete information, auctions and mechanism design, the core, and Shapley value. Exploration of applications of this material through playing stylized in-class and class-wide games and analyzing real-life applications. Prerequisites: mathematical maturity at the level of MATH51, and probability at the level of MS&E 120, or equivalent.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints