2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

1 - 2 of 2 results for: MATH 131P: Partial Differential Equations

MATH 131P: Partial Differential Equations

An introduction to PDE; particularly suitable for non-Math majors. Topics include physical examples of PDE's, method of characteristics, D'Alembert's formula, maximum principles, heat kernel, Duhamel's principle, separation of variables, Fourier series, Harmonic functions, Bessel functions, spherical harmonics. Students who have taken MATH 171 should consider taking MATH 173 rather than 131P. Prerequisite: 53.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR

ME 334: Advanced Dynamics, Controls and System Identification

Modeling and analysis of dynamical systems. This class will cover reference frames and coordinate systems, kinematics and constraints, mass distribution, virtual work, D'Alembert's principle, Lagrange and Hamiltonian equations of motion. We will then consider select topics in controls including: dynamical system stability, feedback linearization, system observability and controllability, and system identification methods. Students will learn and apply these concepts through homework and projects that involve the simulation of dynamical systems. Prerequisites: ENGR15 or equivalent, Recommended: Linear Algebra ( EE 263, Math 113, CME 302 or equivalent), Partial Differential Equations ( Math 131P or equivalent).
Terms: Spr | Units: 3 | Repeatable 2 times (up to 6 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints