2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 
  Are you a Computer Science Student? Want to make Stanford's systems even better?
Do you want to help improve the Stanford systems that you and your friends use all the time? We are looking for students interested in hacking on ExploreCourses and other upcoming university systems. Click here to learn more!

1 - 10 of 20 results for: ENGR 110

CEE 137B: Advanced Architecture Studio (CEE 237B)

This course will focus on the topic of interdisciplinary collaboration and its role in the development of design concepts. Specifically, the integration of structural with architectural considerations to produce a unified urban, spatial, tectonic and structural proposition will be our field of investigation. This course is an architecture studio course where class time will be spent primarily in individual or group desk critiques and pin-up sessions. May be repeat for credit. Total completions allowed: 3. Additionally, there will be lectures, case study presentations and a field trip. Prerequisites: required: CEE 31 (or 31Q) Drawing, CEE 110 BIM and CEE 130 Design.
Terms: Spr | Units: 6 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Williams, A. (PI)

CEE 237B: Advanced Architecture Studio (CEE 137B)

This course will focus on the topic of interdisciplinary collaboration and its role in the development of design concepts. Specifically, the integration of structural with architectural considerations to produce a unified urban, spatial, tectonic and structural proposition will be our field of investigation. This course is an architecture studio course where class time will be spent primarily in individual or group desk critiques and pin-up sessions. May be repeat for credit. Total completions allowed: 3. Additionally, there will be lectures, case study presentations and a field trip. Prerequisites: required: CEE 31 (or 31Q) Drawing, CEE 110 BIM and CEE 130 Design.
Terms: Spr | Units: 6 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Williams, A. (PI)

CHEMENG 110: Equilibrium Thermodynamics

Thermodynamic properties, equations of state, properties of non-ideal systems including mixtures, and phase and chemical equilibria. Prerequisite: CHEM 171 or equivalent.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 130: Separation Processes

Analysis and design of equilibrium and non-equilibrium separation processes. Possible examples: distillation, liquid-liquid extraction, flash distillation, electrophoresis, centrifugation, membrane separations, chromatography, and reaction-assisted separation processes. Prerequisite CHEMENG 110 or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 170: Kinetics and Reactor Design

Chemical kinetics, elementary reactions, mechanisms, rate-limiting steps, and quasi-steady state approximations. Ideal isothermal and non-isothermal reactors; design principles. Steady state and unsteady state operation of reactors; conversion and limitations of thermodynamic equilibrium. Enzymes and heterogeneous catalysis and catalytic reaction mechanisms. Prerequisites: 110, 120A, 120B.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CS 110: Principles of Computer Systems

Principles and practice of engineering of computer software and hardware systems. Topics include: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; security, and encryption; and performance optimizations. Prerequisite: 107.
Terms: Aut, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

CS 140: Operating Systems and Systems Programming

Operating systems design and implementation. Basic structure; synchronization and communication mechanisms; implementation of processes, process management, scheduling, and protection; memory organization and management, including virtual memory; I/O device management, secondary storage, and file systems. Prerequisite: CS 110.
Terms: Win, Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

CS 144: Introduction to Computer Networking

Principles and practice. Structure and components of computer networks, packet switching, layered architectures. Applications: web/http, voice-over-IP, p2p file sharing and socket programming. Reliable transport: TCP/IP, reliable transfer, flow control, and congestion control. The network layer: names and addresses, routing. Local area networks: ethernet and switches. Wireless networks and network security. Prerequisite: CS 110.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

CS 149: Parallel Computing

This course is an introduction to parallelism and parallel programming. Most new computer architectures are parallel; programming these machines requires knowledge of the basic issues of and techniques for writing parallel software. Topics: varieties of parallelism in current hardware (e.g., fast networks, multicore, accelerators such as GPUs, vector instruction sets), importance of locality, implicit vs. explicit parallelism, shared vs. non-shared memory, synchronization mechanisms (locking, atomicity, transactions, barriers), and parallel programming models (threads, data parallel/streaming, MapReduce, Apache Spark, SPMD, message passing, SIMT, transactions, and nested parallelism). Significant parallel programming assignments will be given as homework. The course is open to students who have completed the introductory CS course sequence through 110 and have taken CS 143.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

CS 155: Computer and Network Security

For seniors and first-year graduate students. Principles of computer systems security. Attack techniques and how to defend against them. Topics include: network attacks and defenses, operating system security, application security (web, apps, databases), malware, privacy, and security for mobile devices. Course projects focus on building reliable code. Prerequisite: 110. Recommended: basic Unix.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints