2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: EE 378B: Inference, Estimation, and Information Processing

EE 378B: Inference, Estimation, and Information Processing

Techniques and models for signal, data and information processing, with emphasis on incomplete data, non-ordered index sets and robust low-complexity methods. Linear models; regularization and shrinkage; dimensionality reduction; streaming algorithms; sketching; clustering, search in high dimension; low-rank models; principal component analysis. Applications include: positioning from pairwise distances; distributed sensing; measurement/traffic monitoring in networks; finding communities/clusters in networks; recommendation systems; inverse problems. Prerequisites: EE278 and EE263 or equivalent. Recommended but not required: EE378A
Last offered: Spring 2019
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints