2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: CME211

CME 211: Software Development for Scientists and Engineers

Basic usage of the Python and C/C++ programming languages are introduced and used to solve representative computational problems from various science and engineering disciplines. Software design principles including time and space complexity analysis, data structures, object-oriented design, decomposition, encapsulation, and modularity are emphasized. Usage of campus wide Linux compute resources: login, file system navigation, editing files, compiling and linking, file transfer, etc. Versioning and revision control, software build utilities, and the LaTeX typesetting software are introduced and used to help complete programming assignments. Prerequisite: introductory programming course equivalent to CS 106A or instructor consent.
Terms: Aut | Units: 3

CME 250A: Machine Learning on Big Data

A short course presenting the application of machine learning methods to large datasets.Topics include: brief review of the common issues of machine learning, such as, memorizing/overfitting vs learning, test/train splits, feature engineering, domain knowledge, fast/simple/dumb learners vs slow/complex/smart learners; moving your model from your laptop into a production environment using Python (scikit) or R on small data (laptop sized) at first; building math clusters using the open source H2O product to tackle Big Data, and finally to some model building on terabyte sized datasets. Prereqresites: basic knowledge of statistics, matrix algebra, and unix-like operating systems; basic file and text manipulation skills with unix tools: pipes, cut, paste, grep, awk, sed, sort, zip; programming skill at the level of CME211 or CS106A.
Last offered: Spring 2016

CME 253: Introduction to GPU Computing and CUDA

Covers the fundamentals of accelerating applications with GPUs (Graphics Processing Units); GPU programming with CUDA and OpenACC, debugging, thrust/CUB, profiling, optimization, debugging, and other CUDA tools. Libraries to easily accelerate compute code will be presented and deployment on larger systems will be addressed, including multi-GPU environments. Several practical examples will be detailed, including deep learning. Pre-requiste: knowledge of C/C++ at the level of CME211 or CS106b.
Last offered: Winter 2017
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints