2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: EE364a

CS 224D: Deep Learning for Natural Language Processing

Deep learning approaches have obtained very high performance across many different natural language processing tasks. In this class, students will learn to understand, implement, train, debug, visualize and potentially invent their own neural network models for a variety of language understanding tasks. The course provides a deep excursion from early models to cutting-edge research. Applications will range across a broad spectrum: from simple tasks like part of speech tagging, over sentiment analysis to question answering and machine translation. The final project will involve implementing a complex neural network model and applying it to a large scale NLP problem. Prerequisites: programming abilities (python), linear algebra, Math 21 or equivalent, machine learning background ( CS 229 or similar) Recommended: machine learning ( CS 229, CS 228), CS 224N, EE364a (convex optimization), CS 231N
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Socher, R. (PI)

EE 364A: Convex Optimization I (CME 364A, CS 334A)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.
Terms: Win, Sum | Units: 3 | Grading: Letter or Credit/No Credit

EE 464: Semidefinite Optimization and Algebraic Techniques

This course focuses on recent developments in optimization,nspecifically on the use of convex optimization to addressnproblems involving polynomial equations and inequalities. Thencourse covers approaches for finding both exact and approximatensolutions to such problems. We will discuss the use of dualitynand algebraic methods to find feasible points and certificates ofninfeasibility, and the solution of polynomial optimizationnproblems using semidefinite programming. The course coversntheoretical foundations as well as algorithms and theirncomplexity. Prerequisites: EE364A or equivalent course on convexnoptimization.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints