ECON 271: Intermediate Econometrics II
Second course in the PhD sequence in econometrics at the Economics Department (as
Econ 271) and at the GSB (as
MGTECON 604). This course presents modern econometric methods with a focus on regression. Among the topics covered are: linear regression and its interpretation, robust inference, asymptotic theory for maximum-likelihood und other extremum estimators, generalized method of moments, Bayesian regression, high-dimensional and non-parametric regression, binary and multinomial discrete choice, resampling methods, linear time-series models, and state-space models. As a prerequisite, this course assumes working knowledge of probability theory and statistics as covered in
Econ 270/
MGTECON 603. Prerequisites:
Econ 270/
MGTECON 603 or equivalent.
Terms: Win
| Units: 3-5
STATS 271: Applied Bayesian Statistics (STATS 371)
This course is a modern treatment of applied Bayesian statistics with a focus on high-dimensional problems. We will study a collection of canonical methods that see heavy use in applications, including high-dimensional linear and generalized linear models, hierarchical/random effects models, Gaussian processes, variable-dimension and Dirichlet process mixtures, graphical models, and methods used in Bayesian inverse problems. Each method will be accompanied by one or more motivating datasets. Through these examples the course will cover: (1) Bayesian hypothesis testing, multiplicity correction, selection, shrinkage, and model averaging; (2) prior choice; (3) Frequentist properties of Bayesian procedures in high dimensions; and (4) computation by Markov chain Monte Carlo, including constructing efficient Gibbs, Metropolis, and more exotic samplers, empirical convergence analysis, strategies for scaling computation to high dimensions (approximations, divide-and-conquer, minibatching, et cetera), and the theory of convergence rates.
Last offered: Spring 2021
Filter Results: