2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 3 of 3 results for: STATS 101

STATS 101: Data Science 101

https://statweb.stanford.edu/~tibs/stat101.html This course will provide a hands-on introduction to statistics and data science. Students will engage with the fundamental ideas in inferential and computational thinking. Each week, we will explore a core topic comprising three lectures and two labs (a module), in which students will manipulate real-world data and learn about statistical and computational tools. Students will engage in statistical computing and visualization with current data analytic software (Jupyter, R). The objectives of this course are to have students (1) be able to connect data to underlying phenomena and to think critically about conclusions drawn from data analysis, and (2) be knowledgeable about programming abstractions so that they can later design their own computational inferential procedures. No programming or statistical background is assumed. Freshmen and sophomores interested in data science, computing and statistics are encouraged to attend. Open to graduates as well.
Last offered: Spring 2020 | UG Reqs: GER: DB-NatSci, WAY-AQR

STATS 216: Introduction to Statistical Learning

Overview of supervised learning, with a focus on regression and classification methods. Syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis;cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; Some unsupervised learning: principal components and clustering (k-means and hierarchical). Computing is done in R, through tutorial sessions and homework assignments. This math-light course is offered via video segments (MOOC style), and in-class problem solving sessions. Prereqs: Introductory courses in statistics or probability (e.g., Stats 60 or Stats 101), linear algebra (e.g., Math 51), and computer programming (e.g., CS 105).
Terms: Win | Units: 3

STATS 216V: Introduction to Statistical Learning

Overview of supervised learning, with a focus on regression and classification methods. Syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; Some unsupervised learning: principal components and clustering (k-means and hierarchical). Computing is done in R, through tutorial sessions and homework assignments. This math-light course is offered remotely only via video segments (MOOC style). TAs will host remote weekly office hours using an online platform such as Zoom. There are four homework assignments, a midterm, and a final exam, all of which are administered remotely. Prereqs: Introductory courses in statistics or probability (e.g., Stats 60 or Stats 101), linear algebra (e.g., Math 51), and computer programming (e.g., CS 105).
Last offered: Summer 2020
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints