2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 4 of 4 results for: Planetary Surface Processes: Shaping the Landscape of the Solar System

GEOLSCI 120: Planetary Surface Processes: Shaping the Landscape of the Solar System (GEOLSCI 220, GEOPHYS 119, GEOPHYS 219)

The surfaces of planets, moons, and other bodies are shaped and modified by a wide array of physical and chemical processes. Understanding these processes allows us to decipher the history of the Solar System. This course offers a quantitative examination of both exogenous processes - such as impact cratering and space weathering - and endogenous processes - such as tectonics, weathering, and volcanic, fluvial, eolian, and periglacial activity - as well as a brief introduction to the fundamentals of remote sensing in the context of planetary exploration. As we develop a basic mechanistic framework for these processes, we will apply our acquired knowledge through thematic discussions of the surfaces of Mercury, Venus, Earth, the Moon, Mars, asteroids, Io, Titan, Europa, Enceladus, Pluto, and comets. For upper-division undergraduates and graduate students.
Terms: Spr | Units: 4 | Repeatable 3 times (up to 12 units total)
Instructors: Lapotre, M. (PI)

GEOLSCI 220: Planetary Surface Processes: Shaping the Landscape of the Solar System (GEOLSCI 120, GEOPHYS 119, GEOPHYS 219)

The surfaces of planets, moons, and other bodies are shaped and modified by a wide array of physical and chemical processes. Understanding these processes allows us to decipher the history of the Solar System. This course offers a quantitative examination of both exogenous processes - such as impact cratering and space weathering - and endogenous processes - such as tectonics, weathering, and volcanic, fluvial, eolian, and periglacial activity - as well as a brief introduction to the fundamentals of remote sensing in the context of planetary exploration. As we develop a basic mechanistic framework for these processes, we will apply our acquired knowledge through thematic discussions of the surfaces of Mercury, Venus, Earth, the Moon, Mars, asteroids, Io, Titan, Europa, Enceladus, Pluto, and comets. For upper-division undergraduates and graduate students.
Terms: Spr | Units: 4 | Repeatable 3 times (up to 12 units total)
Instructors: Lapotre, M. (PI)

GEOPHYS 119: Planetary Surface Processes: Shaping the Landscape of the Solar System (GEOLSCI 120, GEOLSCI 220, GEOPHYS 219)

The surfaces of planets, moons, and other bodies are shaped and modified by a wide array of physical and chemical processes. Understanding these processes allows us to decipher the history of the Solar System. This course offers a quantitative examination of both exogenous processes - such as impact cratering and space weathering - and endogenous processes - such as tectonics, weathering, and volcanic, fluvial, eolian, and periglacial activity - as well as a brief introduction to the fundamentals of remote sensing in the context of planetary exploration. As we develop a basic mechanistic framework for these processes, we will apply our acquired knowledge through thematic discussions of the surfaces of Mercury, Venus, Earth, the Moon, Mars, asteroids, Io, Titan, Europa, Enceladus, Pluto, and comets. For upper-division undergraduates and graduate students.
Terms: Spr | Units: 4 | Repeatable 3 times (up to 12 units total)
Instructors: Lapotre, M. (PI)

GEOPHYS 219: Planetary Surface Processes: Shaping the Landscape of the Solar System (GEOLSCI 120, GEOLSCI 220, GEOPHYS 119)

The surfaces of planets, moons, and other bodies are shaped and modified by a wide array of physical and chemical processes. Understanding these processes allows us to decipher the history of the Solar System. This course offers a quantitative examination of both exogenous processes - such as impact cratering and space weathering - and endogenous processes - such as tectonics, weathering, and volcanic, fluvial, eolian, and periglacial activity - as well as a brief introduction to the fundamentals of remote sensing in the context of planetary exploration. As we develop a basic mechanistic framework for these processes, we will apply our acquired knowledge through thematic discussions of the surfaces of Mercury, Venus, Earth, the Moon, Mars, asteroids, Io, Titan, Europa, Enceladus, Pluto, and comets. For upper-division undergraduates and graduate students.
Terms: Spr | Units: 4 | Repeatable 3 times (up to 12 units total)
Instructors: Lapotre, M. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints