2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 1 of 1 results for: MS&E323

MS&E 323: Stochastic Simulation

Emphasis is on the theoretical foundations of simulation methodology. Generation of uniform and non-uniform random variables. Discrete-event simulation and generalized semi-Markov processes. Output analysis (autoregressive, regenerative, spectral, and stationary times series methods). Variance reduction techniques (antithetic variables, common random numbers, control variables, discrete-time, conversion, importance sampling). Stochastic optimization (likelihood ratio method, perturbation analysis, stochastic approximation). Simulation in a parallel environment. Prerequisite: MS&E 221 or equivalent.
Terms: Win | Units: 3
Instructors: Glynn, P. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints