2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 10 of 18 results for: EIPER::ms_oceans-estuaries

BIO 238: Ecosystem Services: Frontiers in the Science of Valuing Nature (BIO 138, EARTHSYS 139, EARTHSYS 239)

This course explores the science of valuing nature, beginning with its historical origins and then a primary focus on its recent development and frontiers. The principal aim of the course is to enable new research and real-world applications of InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) tools and approaches. We will discuss the interconnections between people and nature and key research frontiers, such as in the realms of biodiversity, resilience, human health, poverty alleviation, and sustainable development. The science we¿ll explore is in the service of decisions, and we will use examples from real life to illustrate why this science is so critical to informing why, where, how, and how much people need nature. Prerequisite. Basic to intermediate GIS skills are required (including working with raster, vector and tabular data; loading and editing rasters, shapefiles, and tables into a GIS; understanding coordinate systems; and performing basic raster math).
Last offered: Autumn 2019

BIOHOPK 263H: Oceanic Biology (BIOHOPK 163H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor.
Last offered: Winter 2018

BIOHOPK 273H: Marine Conservation Biology (BIOHOPK 173H)

(Graduate students register for 273H.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.
Last offered: Spring 2019 | Repeatable for credit (up to 99 units total)

BIOHOPK 274: Hopkins Microbiology Course (BIO 274S, CEE 274S, ESS 253S)

(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents.
Last offered: Summer 2019 | Repeatable for credit

BIOHOPK 285H: Ecology and Conservation of Kelp Forest Communities (BIOHOPK 185H)

(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on scientific diving and quantitative ecological methods in kelp forests.. Topics include identification and natural history of resident organisms, ecological processes, and subtidal field techniques. Class projects contribute to long-term monitoring at Hopkins Marine Station. It is recommended (but not required) that students complete the Stanford Scientific Diver Training session, typically offered prior to the start of the course. Prerequisites: consent of instructor; rescue scuba certification and scuba equipment.
Last offered: Summer 2019

CEE 226: Life Cycle Assessment for Complex Systems

Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as biobased products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: DfE. Student teams complete a life cycle assessment of a product or system chosen from industry.
Terms: Aut | Units: 3-4
Instructors: Lepech, M. (PI)

CEE 262D: Introduction to Physical Oceanography (CEE 162D, EARTHSYS 164, ESS 148)

The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41.
Terms: Win | Units: 4

CEE 272: Coastal Contaminants

Coastal pollution and its effects on ecosystems and human health. The sources, fate, and transport of human pathogens and nutrients. Background on coastal ecosystems and coastal transport phenomena including tides, waves, and cross shelf transport. Introduction to time series analysis with MATLAB. Undergraduates require consent of instructor.
Terms: Win | Units: 3-4
Instructors: Layton, B. (PI)

CEE 274S: Hopkins Microbiology Course (BIO 274S, BIOHOPK 274, ESS 253S)

(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents.
Last offered: Summer 2019 | Repeatable for credit

CEE 275A: California Coast: Science, Policy, and Law (CEE 175A)

This interdisciplinary course integrates the legal, scientific, and policy dimensions of how we characterize and manage resource use and allocation along the California coast. We will use this geographic setting as the vehicle for exploring more generally how agencies, legislatures, and courts resolve resource-use conflicts and the role that scientific information and uncertainty play in the process. Our focus will be on the land-sea interface as we explore contemporary coastal land-use and marine resource decision-making, including coastal pollution, public health, ecosystem management; public access; private development; local community and state infrastructure; natural systems and significant threats; resource extraction; and conservation, mitigation and restoration. Students will learn the fundamental physics, chemistry, and biology of the coastal zone, tools for exploring data collected in the coastal ocean, and the institutional framework that shapes public and private decisions more »
This interdisciplinary course integrates the legal, scientific, and policy dimensions of how we characterize and manage resource use and allocation along the California coast. We will use this geographic setting as the vehicle for exploring more generally how agencies, legislatures, and courts resolve resource-use conflicts and the role that scientific information and uncertainty play in the process. Our focus will be on the land-sea interface as we explore contemporary coastal land-use and marine resource decision-making, including coastal pollution, public health, ecosystem management; public access; private development; local community and state infrastructure; natural systems and significant threats; resource extraction; and conservation, mitigation and restoration. Students will learn the fundamental physics, chemistry, and biology of the coastal zone, tools for exploring data collected in the coastal ocean, and the institutional framework that shapes public and private decisions affecting coastal resources. There will be 3 to 4 written assignments addressing policy and science issues during the quarter, as well as a take-home final assignment. Special Instructions: In-class work and discussion is often done in interdisciplinary teams of students from the School of Law, the School of Engineering, the School of Humanities and Sciences, and the School of Earth, Energy, and Environmental Sciences. Students are expected to participate in class discussion and field trips. Elements used in grading: Participation, including class session and field trip attendance, writing and quantitative assignments. Cross-listed with Civil & Environmental Engineering ( CEE 175A/275A), Earth Systems ( EARTHSYS 175/275), and Law ( LAW 2510). Open to graduate students and to advanced undergraduates with instructor consent. Enrollment limited; priority given to CEE majors and Law School students.
Terms: Spr | Units: 3-4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints