2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

1 - 10 of 18 results for: EIPER::ms_climate-atmosphere

BIO 117: Biology and Global Change (EARTHSYS 111, EARTHSYS 217, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 238: Ecosystem Services: Frontiers in the Science of Valuing Nature (BIO 138, EARTHSYS 139, EARTHSYS 239)

This course explores the science of valuing nature, beginning with its historical origins and then a primary focus on its recent development and frontiers. The principal aim of the course is to enable new research and real-world applications of InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) tools and approaches. We will discuss the interconnections between people and nature and key research frontiers, such as in the realms of biodiversity, resilience, human health, poverty alleviation, and sustainable development. The science we¿ll explore is in the service of decisions, and we will use examples from real life to illustrate why this science is so critical to informing why, where, how, and how much people need nature. Prerequisite. Basic to intermediate GIS skills are required (including working with raster, vector and tabular data; loading and editing rasters, shapefiles, and tables into a GIS; understanding coordinate systems; and performing basic raster math).
Last offered: Autumn 2019

CEE 172: Air Quality Management

Quantitative introduction to the engineering methods used to study and seek solutions to current air quality problems. Topics: global atmospheric changes, urban sources of air pollution, indoor air quality problems, design and efficiencies of pollution control devices, and engineering strategies for managing air quality. Prerequisites: 70, MATH 51.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Kopperud, R. (PI)

CEE 226: Life Cycle Assessment for Complex Systems

Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as biobased products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: DfE. Student teams complete a life cycle assessment of a product or system chosen from industry.
Terms: Aut | Units: 3-4
Instructors: Lepech, M. (PI)

CEE 263A: Air Pollution Modeling

The numerical modeling of urban, regional, and global air pollution focusing on gas chemistry and radiative transfer. Stratospheric, free-tropospheric, and urban chemistry. Methods for solving stiff systems of chemical ordinary differential, including the multistep implicit-explicit method, Gear's method with sparse-matrix techniques, and the family method. Numerical methods of solving radiative transfer, coagulation, condensation, and chemical equilibrium problems. Project involves developing a basic chemical ordinary differential equation solver. Prerequisite: CS 106A or equivalent.
Last offered: Spring 2018

CEE 263B: Numerical Weather Prediction

Numerical weather prediction. Continuity equations for air and water vapor, the thermodynamic energy equation, and momentum equations derived for the atmosphere. Numerical methods of solving partial differential equations, including finite-difference, finite-element, semi-Lagrangian, and pseudospectral methods. Time-stepping schemes: the forward-Euler, backward-Euler, Crank-Nicolson, Heun, Matsuno, leapfrog, and Adams-Bashforth schemes. Boundary-layer turbulence parameterizations, soil moisture, and cloud modeling. Project developing a basic weather prediction model. Prerequisite: CS 106A or equivalent.
Last offered: Spring 2017

CEE 263C: Weather and Storms (CEE 63)

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.
Terms: Aut | Units: 3

CEE 263D: Air Pollution and Global Warming: History, Science, and Solutions (CEE 64)

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci
Last offered: Winter 2020

CEE 265E: Adaptation to Sea Level Rise and Extreme Weather Events

Students are introduced to basic aspects of climate change in the context of sea level rise and the intensity and frequency of extreme-weather events, including floods, droughts and wildfires. Climate change adaptations are adjustments in behaviors, plans and projects to reduce society's vulnerability to climate change impacts. Major adaptation approaches relevant to civil and environmental engineers are emphasized. Adaptation measures considered include structural and ecologically-based measures for dealing with sea level rise, storm surges, floods and wildfires. In the context of coastal flooding, consideration is also given to ¿managed retreat¿ (i.e., deliberately altering flood defenses to allow flooding of presently protected areas). Influence of climate change on migration is also considered. Additional measures to reduce vulnerability include emergency preparedness and disaster response management systems. Illustrations of innovative adaptation measures taken by cities around the world are featured. Common barriers to climate change adaptation are also reviewed. Limited enrollment. Students from all departments and programs are welcome, with some admission preference given to students in CEE graduate programs followed by CEE Department seniors.
Last offered: Autumn 2019

CEE 265F: Environmental Governance and Climate Resilience (POLISCI 227B, PUBLPOL 265F)

Adaptation to climate change will not only require new infrastructure and policies, but it will also challenge our local, state and national governments to collaborate across jurisdictional lines in ways that include many different types of private and nonprofit organizations and individual actors. The course explores what it means for communities to be resilient and how they can reach that goal in an equitable and effective way. Using wildfires in California as a case study, the course assesses specific strategies, such as controlled burns and building codes, and a range of planning and policy measures that can be used to enhance climate resilience. In addition, it considers how climate change and development of forested exurban areas (among other factors) have influenced the size and severity of wildfires. The course also examines the obstacles communities face in selecting and implementing adaptation measures (e.g., resource constraints, incentives to develop in forested areas, inad more »
Adaptation to climate change will not only require new infrastructure and policies, but it will also challenge our local, state and national governments to collaborate across jurisdictional lines in ways that include many different types of private and nonprofit organizations and individual actors. The course explores what it means for communities to be resilient and how they can reach that goal in an equitable and effective way. Using wildfires in California as a case study, the course assesses specific strategies, such as controlled burns and building codes, and a range of planning and policy measures that can be used to enhance climate resilience. In addition, it considers how climate change and development of forested exurban areas (among other factors) have influenced the size and severity of wildfires. The course also examines the obstacles communities face in selecting and implementing adaptation measures (e.g., resource constraints, incentives to develop in forested areas, inadequate policy enforcement, and weak inter-agency coordination). Officials from various Bay Area organizations contribute to aspects of the course; and students will present final papers to local government offcials. Limited enrollment. Students will be asked to prepare application essays on the first day of class. Course is intended for seniors and graduate students.
Last offered: Winter 2020
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints