2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 3 of 3 results for: CS 248

CS 248: Interactive Computer Graphics

This course provides a comprehensive introduction to interactive computer graphics, focusing on fundamental concepts and techniques, as well as their cross-cutting relationship to multiple problem domains in interactive graphics (such as rendering, animation, geometry, image processing). Topics include: 2D and 3D drawing, sampling theory, interpolation, rasterization, image compositing, the real-time GPU graphics pipeline (and parallel rendering), VR rendering, geometric transformations, curves and surfaces, geometric data structures, subdivision, meshing, spatial hierarchies, image processing, time integration, physically-based animation, and inverse kinematics. The course will involve several in-depth programming assignments and a self-selected final project that explores concepts covered in the class. Prerequisite: CS 107, MATH 51.
Terms: Win | Units: 3-4

CS 348A: Computer Graphics: Geometric Modeling & Processing

The mathematical tools needed for the geometrical aspects of computer graphics and especially for modeling smooth shapes. Fundamentals: homogeneous coordinates, transformations, and perspective. Theory of parametric and implicit curve and surface models: polar forms, Bézier arcs and de Casteljau subdivision, continuity constraints, B-splines, tensor product, and triangular patch surfaces. Subdivision surfaces and multi-resolution representations of geometry. Representations of solids and conversions among them. Surface reconstruction from scattered data points. Geometry processing on meshes, including simplification and parameterization. Prerequisite: linear algebra at the level of CME103. Recommended: 248.
Terms: Win | Units: 3-4
Instructors: Guibas, L. (PI)

CS 348B: Computer Graphics: Image Synthesis Techniques

Intermediate level, emphasizing high-quality image synthesis algorithms and systems issues in rendering. Topics include: Reyes and advanced rasterization, including motion blur and depth of field; ray tracing and physically based rendering; Monte Carlo algorithms for rendering, including direct illumination and global illumination; path tracing and photon mapping; surface reflection and light source models; volume rendering and subsurface scattering; SIMD and multi-core parallelism for rendering. Written assignments and programming projects. Prerequisite: 248 or equivalent. Recommended: Fourier analysis or digital signal processing.
Terms: Spr | Units: 3-4
Instructors: Hanrahan, P. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints