2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 100 results for: ESS

ESS 8: The Oceans: An Introduction to the Marine Environment (EARTHSYS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Last offered: Spring 2019 | UG Reqs: WAY-SMA

ESS 10SC: In the Age of the Anthropocene: Coupled-Human Natural Systems of Southeast Alaska

Southeast Alaska is often described as America's "last frontier," embodying a physical reality of the "pristine" that was once revered by the early romantics and founders of the modern conservation movement throughout Western North America. Although endowed with more designated Wilderness land than any other state, Alaska remains a working landscape: a mixed cash-subsistence economy where communities rely upon the harvest and export of natural resources. Here, ecosystem services remain tangible, and people living in communities that are unconnected by roads confront questions of sustainability on a daily basis. This field-based course introduces students to the global questions of land use change and sustainable resource management in the American West through the place-based exploration of Southeast Alaska. Focused on four key social-ecological challenges -- fisheries, forestry, tourism, and energy -- the coupled human-natural systems of Southeast Alaska provide a unique lens for stud more »
Southeast Alaska is often described as America's "last frontier," embodying a physical reality of the "pristine" that was once revered by the early romantics and founders of the modern conservation movement throughout Western North America. Although endowed with more designated Wilderness land than any other state, Alaska remains a working landscape: a mixed cash-subsistence economy where communities rely upon the harvest and export of natural resources. Here, ecosystem services remain tangible, and people living in communities that are unconnected by roads confront questions of sustainability on a daily basis. This field-based course introduces students to the global questions of land use change and sustainable resource management in the American West through the place-based exploration of Southeast Alaska. Focused on four key social-ecological challenges -- fisheries, forestry, tourism, and energy -- the coupled human-natural systems of Southeast Alaska provide a unique lens for students to interpret broader resource management and conservation issues. The curriculum balances field explorations and classroom lectures with community exploration in which students will engage with fishermen, hatchery workers, forest managers, loggers, mill owners, tour operators, tourists, city officials, citizens, and Native residents. Students will catch their own salmon, walk through old-growth and logged forests, kayak next to glacial moraines, and witness the impacts of human activities, both local and global, on the social-ecological systems around them. In the context of rapidly changing ecosystems, students will confront the historical, ecological, and economic complexities of environmental stewardship in this region. By embedding their experiences within frameworks of land change science, land-ocean interactions, ecosystem ecology, and natural resource management and economics, students will leave this course ready to apply what they have learned to the global challenges of sustainability and conservation that pervade systems far beyond Alaska. This course is co-sponsored by the School of Earth Sciences and takes place in Sitka, Alaska. Students arrange for their arrival at the seminar's point of origin; all subsequent travel is made possible by Sophomore College and the School of Earth Sciences.
Terms: Sum | Units: 2
Instructors: Dunbar, R. (PI)

ESS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, GEOLSCI 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

ESS 40: Approaching Palau: Preparation and Research Ideation and Development (CEE 40)

This class is a seminar designed to prepare students participating in the 2019 Palau Seminar for possible research activities. Enrollment by approval of the instructors.
Terms: Spr | Units: 1

ESS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (EARTHSYS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's Changes in a California Estuary: A Profile of Elkhorn Slough. Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Francis, C. (PI)

ESS 60: Food, Water and War: Life on the Mekong

Preparatory course for Bing Overseas Studies summer course in Cambodia. Prerequisite. Requires instructor consent.

ESS 86N: The Most Rational People in the World

Humans, broadly construed, emerged as bipedal apes in the African mixed savanna-woodlands approximately two million years ago. From humble beginnings, humans have gone on to be become the ecologically dominant species in most biomes and grown to a global population in excess of seven billion. This dominance arises from a combination of features of the human organism including its extreme degree of behavioral flexibility and flexible social organization. The prima facie evidence of human evolutionary and ecological success raises a paradox with respect to recent work in economics and psychology which increasingly argues for pervasive irrationality in human decision-making in a wide array of behavioral contexts. How is it possible for an organism with such seemingly flawed software supporting decision-making to become the globally dominant species? We will use this contradiction as the launching point for understanding what rationality means in a broad ecological and cross-cultural conte more »
Humans, broadly construed, emerged as bipedal apes in the African mixed savanna-woodlands approximately two million years ago. From humble beginnings, humans have gone on to be become the ecologically dominant species in most biomes and grown to a global population in excess of seven billion. This dominance arises from a combination of features of the human organism including its extreme degree of behavioral flexibility and flexible social organization. The prima facie evidence of human evolutionary and ecological success raises a paradox with respect to recent work in economics and psychology which increasingly argues for pervasive irrationality in human decision-making in a wide array of behavioral contexts. How is it possible for an organism with such seemingly flawed software supporting decision-making to become the globally dominant species? We will use this contradiction as the launching point for understanding what rationality means in a broad ecological and cross-cultural context. What do we mean by `rationality¿? How do different disciplines conceive of rationality in different ways? Is there such a thing as a rationality that transcends cultural differences or is the very idea of rationality a cultural construction that is used to justify imperialism and other modes of paternalism? Are there systematic factors that promote or impede rational decision-making? The seminar will provide a gentle introduction to the formal approaches of decision theory which we will apply to an unusual array of topics centered on the subsistence and reproductive decisions of hunter-gatherers, horticulturalists, pastoralists, and agrarian peasants, in short, people living in face-to-face, subsistence societies. In addition to doing reading from a broad array of social and natural science disciplines around the topic of rationality, students will regularly engage in exercises to assess their own approaches to decision-making.
Terms: Sum | Units: 4 | UG Reqs: WAY-SI
Instructors: Jones, J. (PI)

ESS 101: Environmental and Geological Field Studies in the Rocky Mountains (EARTHSYS 100)

Three-week, field-based program in the Greater Yellowstone/Teton and Wind River Mountains of Wyoming. Field-based exercises covering topics including: basics of structural geology and petrology; glacial geology; western cordillera geology; paleoclimatology; chemical weathering; aqueous geochemistry; and environmental issues such as acid mine drainage and changing land-use patterns.
Last offered: Autumn 2018

ESS 102: Scientific Basis of Climate Change (ESS 202)

This course explores the scientific basis of anthropogenic climate change. We will read the original papers that established the scientific foundation for the climate change forecast. Starting with Fourier¿s description of the greenhouse effect, we trace the history of the key insights into how humanity is perturbing the climate system. The course is based on ¿The Warming Papers,¿ edited by David Archer and Raymond Pierrehumbert. Participants take turns presenting and leading a discussion of the papers and of Archer and Pierrehumbert¿s commentary.
Terms: Spr | Units: 3-5

ESS 103: Planetary Atmospheres: Dynamics (ESS 203)

This course describes the physics and general circulation of planetary atmospheres in the Solar System and among the growing zoo of exoplanets. Topics include observations, energy balance, composition, radiation and convection, with emphasis on giant/fluid planets. Prerequisites: Math 51 or CME 100 or equivalent, and ESS 246A and ESS 246B, or consent of the instructor.
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints