## PHYSICS 14N: Quantum Information: Visions and Emerging Technologies

What sets quantum information apart from its classical counterpart is that it can be encoded non-locally, woven into correlations among multiple qubits in a phenomenon known as entanglement. We will discuss paradigms for harnessing entanglement to solve hitherto intractable computational problems or to push the precision of sensors to their fundamental quantum mechanical limits. We will also examine challenges that physicists and engineers are tackling in the laboratory today to enable the quantum technologies of the future.

Terms: Win
| Units: 3
| UG Reqs: WAY-FR, WAY-SMA

Instructors:
Schleier-Smith, M. (PI)

## PHYSICS 16: The Origin and Development of the Cosmos

How did the present Universe come to be? The last few decades have seen remarkable progress in understanding this age-old question. Course will cover the history of the Universe from its earliest moments to the present day, and the physical laws that govern its evolution. The early Universe including inflation and the creation of matter and the elements. Recent discoveries in our understanding of the makeup of the cosmos, including dark matter and dark energy. Evolution of galaxies, clusters, and quasars, and the Universe as a whole. Implications of dark matter and dark energy for the future evolution of the cosmos. Intended to be accessible to non-science majors, material is explored quantitatively with problem sets using basic algebra and numerical estimates.

Terms: Win, Sum
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Madejski, G. (PI)

## PHYSICS 23: Electricity, Magnetism, and Optics

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite:
PHYSICS 21 or
PHYSICS 21S.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Linde, A. (PI)

## PHYSICS 24: Electricity, Magnetism, and Optics Laboratory

Guided hands-on exploration of concepts in electricity and magnetism, circuits and optics with an emphasis on student predictions, observations and explanations. Introduction to multimeters and oscilloscopes. Pre- or corequisite: PHYS 23.

Terms: Win
| Units: 1

Instructors:
Fox, J. (PI)

## PHYSICS 40: Vector and Mathematical Analysis for Mechanics

Physics 40 teaches fundamental math and physics concepts that are important for success in
Physics 41+ and engineering statics/dynamics. This class has a strong emphasis on physics problem solving schema and vector and mathematical analysis for geometry, forces, and motion. Students master both geometric and algebraic representations of vectors, resolving vectors into components, vector addition/subtraction, dot-products, cross-products, and derivatives. Through systematic practice, students translate between various representations, e.g. sketches, descriptions of a physical system, equations, graphs, and real systems (from various physics and engineering disciplines). Vector equations are used to generate scalar equations, which are then solved using analytical or easy-to-use online tools.

Terms: Win
| Units: 2

Instructors:
Mitiguy, P. (PI)

## PHYSICS 43: Electricity and Magnetism

What is electricity? What is magnetism? How are they related? How do these phenomena manifest themselves in the physical world? The theory of electricity and magnetism, as codified by Maxwell's equations, underlies much of the observable universe. Students develop both conceptual and quantitative knowledge of this theory. Topics include: electrostatics; magnetostatics; simple AC and DC circuits involving capacitors, inductors, and resistors; integral form of Maxwell's equations; electromagnetic waves. Principles illustrated in the context of modern technologies. Broader scientific questions addressed include: How do physical theories evolve? What is the interplay between basic physical theories and associated technologies? Discussions based on the language of mathematics, particularly differential and integral calculus, and vectors. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. Prerequisite:
PHYSICS 41 or equivalent.
MATH 21 or
MATH 51 or
CME 100 or equivalent. Recommended corequisite:
MATH 52 or
CME 102.

Terms: Win, Sum
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Cabrera, B. (PI)

## PHYSICS 44: Electricity and Magnetism Lab

Hands-on exploration of concepts in electricity, magnetism, and circuits. Introduction to multimeters, function generators, oscilloscopes, and graphing techniques. Pre- or corequisite:
PHYSICS 43.

Terms: Win, Sum
| Units: 1

Instructors:
Fox, J. (PI)

## PHYSICS 63: Electricity, Magnetism, and Waves

(Second in a three-part advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course covers the foundations of electricity and magnetism for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Electricity, magnetism, and waves with some description of optics. Electrostatics and Gauss' law. Electric potential, electric field, conductors, image charges. Electric currents, DC circuits. Moving charges, magnetic field, Ampere's law. Solenoids, transformers, induction, AC circuits, resonance. Relativistic point of view for moving charges. Displacement current, Maxwell's equations. Electromagnetic waves, dielectrics. Diffraction, interference, refraction, reflection, polarization. Prerequisite:
PHYSICS 61 and
MATH 51 or
MATH 61CM. Pre- or corequisite:
MATH 52 or
MATH 62CM.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

Instructors:
Goldhaber-Gordon, D. (PI)

## PHYSICS 64: Electricity, Magnetism and Waves Laboratory

Introduction to multimeters, breadboards, function generators and oscilloscopes. Emphasis on student-developed design of experimental procedure and data analysis for topics covered in
PHYSICS 63: electricity, magnetism, circuits, and optics. Pre- or corequisite:
PHYSICS 63

Terms: Win
| Units: 1

Instructors:
Goldhaber-Gordon, D. (PI)

## PHYSICS 112: Mathematical Methods for Physics

The course will focus on nonlinear dynamics and chaos and its applications in physics and other areas of science. Topics will include first-order differential equations and bifurcations, phase plane analysis, limit cycles, chaos, iterated maps, period doubling, fractals, and strange attractors. Applications will be drawn from traditional areas of physics as well as fields like systems biology, evolutionary game theory, and sociophysics. This course can be repeated for credit. Prerequisites:
MATH 53 or equivalent

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR

Instructors:
Kallosh, R. (PI)

Filter Results: