2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
by subject...

1 - 10 of 38 results for: PHYSICS

PHYSICS 16: The Origin and Development of the Cosmos

How did the present Universe come to be? The last few decades have seen remarkable progress in understanding this age-old question. Course will cover the history of the Universe from its earliest moments to the present day, and the physical laws that govern its evolution. The early Universe including inflation and the creation of matter and the elements. Recent discoveries in our understanding of the makeup of the cosmos, including dark matter and dark energy. Evolution of galaxies, clusters, and quasars, and the Universe as a whole. Implications of dark matter and dark energy for the future evolution of the cosmos. Intended to be accessible to non-science majors, material is explored quantitatively with problem sets using basic algebra and numerical estimates.
Terms: Win, Sum | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 18N: Frontiers in Theoretical Physics and Cosmology

Preference to freshmen. The course will begin with a description of the current standard models of gravitation, cosmology, and elementary particle physics. We will then focus on frontiers of current understanding including investigations of very early universe cosmology, string theory, and the physics of black holes.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Kallosh, R. (PI)

PHYSICS 23: Electricity, Magnetism, and Optics

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 21 or PHYSICS 21S.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 24: Electricity, Magnetism, and Optics Laboratory

Guided hands-on exploration of concepts in electricity and magnetism, circuits and optics with an emphasis on student predictions, observations and explanations. Introduction to multimeters and oscilloscopes. Pre- or corequisite: PHYS 23.
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit

PHYSICS 41: Mechanics

Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 41E: Mechanics, Concepts, Calculations, and Context

Physics 41E ( Physics 41 Extended) is an 5-unit version of Physics 41 (4 units) for students with little or no high school physics or calculus. Course topics and mathematical complexity are identical to Physics 41, but the extra classroom time allows students to engage with concepts, develop problem solving skills, and become fluent in mathematical tools that include vector representations and operations, and calculus. The course will use problems drawn from everyday life to explore important physical principles in mechanics, such as Newton's Laws of motion, equations of kinematics, and conservation of energy and momentum. Prerequisite: Math 19 or equivalent; Co-requisite: Math 20 or equivalent. Enrollment is via permission number which can be obtained by filling in the application at https://stanforduniversity.qualtrics.com/jfe/form/SV_6gpr3SkM76WNDVP.
Terms: Win | Units: 5 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 42: Classical Mechanics Laboratory

Hands-on exploration of concepts in classical mechanics: Newton's laws, conservation laws, rotational motion. Introduction to laboratory techniques, experimental equipment and data analysis. Pre- or corequisite: PHYSICS 41
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit

PHYSICS 63: Electricity, Magnetism, and Waves

(Second in a three-part advanced freshman physics series: PHYSICS 61, PHYSICS 63, PHYSICS 65.) This course covers the foundations of electricity and magnetism for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Electricity, magnetism, and waves with some description of optics. Electrostatics and Gauss' law. Electric potential, electric field, conductors, image charges. Electric currents, DC circuits. Moving charges, magnetic field, Ampere's law. Solenoids, transformers, induction, AC circuits, resonance. Relativistic point of view for moving charges. Displacement current, Maxwell's equations. Electromagnetic waves, dielectrics. Diffraction, interference, refraction, reflection, polarization. Prerequisite: PHYSICS 61 and MATH 51 or MATH 61CM or MATH 61DM. Pre- or corequisite: MATH 52 or MATH 62CM or MATH 62DM.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 64: Electricity, Magnetism and Waves Laboratory

Introduction to multimeters, breadboards, function generators and oscilloscopes. Emphasis on student-developed design of experimental procedure and data analysis for topics covered in PHYSICS 63: electricity, magnetism, circuits, and optics. Pre- or corequisite: PHYSICS 63
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit

PHYSICS 93SI: Beyond the Laboratory: Physics, Identity, and Society

Beyond its laws and laboratories, what can physics teach us about society and ourselves? How do physicists¿ identities impact the types of scientific questions that are asked throughout history? And who do we call a physicist? This course seeks to address questions such as these, with an eye to understanding how physics relates to history, politics, and our own identities as young researchers. Students will develop a broader appreciation for where physics comes from, how it relates to themselves, and how they can shape its future. No prior knowledge of physics is necessary; all voices are welcome to contribute to the discussion about these big ideas. As an optional addendum to 93SI, students can participate in POISE (Physics Outreach through Inclusive Science Education), an intensive spring break program in which the themes discussed during the course will be explored in more depth. During POISE, students will develop short workshops for high school students that are geared towards making Physics interesting and accessible. In addition, we will take frequent off-campus trips to Bay Area national labs, museums, companies, the beach, camping sites, and more! Our intention is to create a retreat-style experience in which students can learn more about themselves and each other as Physicists, and put their knowledge to good use in the classroom. Those wishing to participate in the spring break component should apply here, https://goo.gl/forms/KAOA0aCjD7QxxVbW2, and expect to be enrolled in 2 units. Those who are interested in only the course component should apply here, https://goo.gl/forms/xlrsDP0V2ESkMnbS2, and expect to be enrolled in 1 unit.
Terms: Win | Units: 1-2 | Grading: Satisfactory/No Credit
Instructors: Tompkins, L. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints