## PHYSICS 14N: Quantum Information: Visions and Emerging Technologies

What sets quantum information apart from its classical counterpart is that it can be encoded non-locally, woven into correlations among multiple qubits in a phenomenon known as entanglement. We will discuss paradigms for harnessing entanglement to solve hitherto intractable computational problems or to push the precision of sensors to their fundamental quantum mechanical limits. We will also examine challenges that physicists and engineers are tackling in the laboratory today to enable the quantum technologies of the future.

Terms: Aut, Spr
| Units: 3
| UG Reqs: WAY-FR, WAY-SMA

Instructors:
Schleier-Smith, M. (PI)

## PHYSICS 17: Black Holes and Extreme Astrophysics

Black holes represent an extreme frontier of astrophysics. Course will explore the most fundamental and universal force -- gravity -- and how it controls the fate of astrophysical objects, leading in some cases to black holes. How we discover and determine the properties of black holes and their environment. How black holes and their event horizons are used to guide thinking about mysterious phenomena such as Hawking radiation, wormholes, and quantum entanglement. How black holes generate gravitational waves and powerful jets of particles and radiation. Other extreme objects such as pulsars. Relevant physics, including relativity, is introduced and treated at the algebraic level. No prior physics or calculus is required, although some deep thinking about space, time, and matter is important in working through assigned problems.

Terms: Spr
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Abel, T. (PI)

## PHYSICS 25: Modern Physics

How do the discoveries since the dawn of the 20th century impact our understanding of 21st-century physics? This course introduces the foundations of modern physics: Einstein's theory of special relativity and quantum mechanics. Combining the language of physics with tools from algebra and trigonometry, students gain insights into how the universe works on both the smallest and largest scales. Topics may include atomic, molecular, and laser physics; semiconductors; elementary particles and the fundamental forces; nuclear physics (fission, fusion, and radioactivity); astrophysics and cosmology (the contents and evolution of the universe). Emphasis on applications of modern physics in everyday life, progress made in our understanding of the universe, and open questions that are the subject of active research. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite:
PHYSICS 23 or
PHYSICS 23S.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Irwin, K. (PI)

## PHYSICS 26: Modern Physics Laboratory

Guided hands-on and simulation-based exploration of concepts in modern physics, including special relativity, quantum mechanics and nuclear physics with an emphasis on student predictions, observations and explanations. Pre- or corequisite:
PHYSICS 25.

Terms: Spr
| Units: 1

Instructors:
Irwin, K. (PI)

## PHYSICS 43: Electricity and Magnetism

What is electricity? What is magnetism? How are they related? How do these phenomena manifest themselves in the physical world? The theory of electricity and magnetism, as codified by Maxwell's equations, underlies much of the observable universe. Students develop both conceptual and quantitative knowledge of this theory. Topics include: electrostatics; magnetostatics; simple AC and DC circuits involving capacitors, inductors, and resistors; integral form of Maxwell's equations; electromagnetic waves. Principles illustrated in the context of modern technologies. Broader scientific questions addressed include: How do physical theories evolve? What is the interplay between basic physical theories and associated technologies? Discussions based on the language of mathematics, particularly differential and integral calculus, and vectors. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In o
more »

What is electricity? What is magnetism? How are they related? How do these phenomena manifest themselves in the physical world? The theory of electricity and magnetism, as codified by Maxwell's equations, underlies much of the observable universe. Students develop both conceptual and quantitative knowledge of this theory. Topics include: electrostatics; magnetostatics; simple AC and DC circuits involving capacitors, inductors, and resistors; integral form of Maxwell's equations; electromagnetic waves. Principles illustrated in the context of modern technologies. Broader scientific questions addressed include: How do physical theories evolve? What is the interplay between basic physical theories and associated technologies? Discussions based on the language of mathematics, particularly differential and integral calculus, and vectors. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In order to register for this class students must have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic unless they have already taken an introductory Physics class (20, 40, or 60 sequence) at Stanford. Prerequisite:
PHYSICS 41 or equivalent.
MATH 21 or
MATH 51 or
CME 100 or equivalent. Recommended corequisite:
MATH 52 or
CME 102.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Kasevich, M. (PI)

## PHYSICS 43A: Electricity and Magnetism: Concepts, Calculations and Context

Additional assistance and applications for
Physics 43. In-class problems in physics and engineering. Exercises in calculations of electric and magnetic forces and field to reinforce concepts and techniques; Calculations involving inductors, transformers, AC circuits, motors and generators. Highly recommended for students with limited or no high school physics or calculus. Corequisite:
PHYSICS 43-34 or
PHYSICS 43-35; Prerequisite: application at
https://stanforduniversity.qualtrics.com/jfe/form/SV_da1PUm1scvnQ5IV .

Terms: Spr
| Units: 1

Instructors:
Devin, J. (PI)
;
Nanavati, C. (PI)

## PHYSICS 44: Electricity and Magnetism Lab

Hands-on exploration of concepts in electricity, magnetism, and circuits. Introduction to multimeters, function generators, oscilloscopes, and graphing techniques. Pre- or corequisite:
PHYSICS 43.

Terms: Spr
| Units: 1

Instructors:
Kasevich, M. (PI)

## PHYSICS 65: Quantum and Thermal Physics

(Third in a three-part advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course introduces the foundations of quantum and thermodynamics for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Topics related to quantum mechanics include: atoms, electrons, nuclei. Experimental evidence for physics that is not explained by classical mechanics and E&M. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling. Topics related to thermodynamics: limitations of classical mechanics in describing systems with a very large number of particles. Ideal gas, equipartition, heat capacity, definition of temperature, entropy. Brief introduction to kinetic theory and statistical mechanics. Maxwell speed distribution, ideal gas in a box. Laws of thermodynamics. Cycles, heat engines, free energy.nPrerequisites:
PHYSICS 61 &
PHYSICS 63.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

Instructors:
Gratta, G. (PI)

## PHYSICS 67: Introduction to Laboratory Physics

Methods of experimental design, data collection and analysis, statistics, and curve fitting in a laboratory setting. Experiments drawn from electronics, optics, heat, and modern physics. Lecture plus laboratory format. Required for
PHYSICS 60 series Physics and Engineering Physics majors; recommended, in place of
PHYSICS 44, for PHYSICS 40 series students who intend to major in Physics or Engineering Physics. Pre- or corequisite:
PHYSICS 65 or
PHYSICS 43.

Terms: Spr
| Units: 2

Instructors:
Pam, R. (PI)

## PHYSICS 91SI: Practical Computing for Scientists

Essential computing skills for researchers in the natural sciences. Helping students transition their computing skills from a classroom to a research environment. Topics include the Unix operating system, the Python programming language, and essential tools for data analysis, simulation, and optimization. More advanced topics as time allows. Prerequisite: CS106A or equivalent.

Terms: Spr
| Units: 2

Filter Results: