2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 38 results for: GEOPHYS

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: Segall, P. (PI)

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: Beroza, G. (PI)

GEOPHYS 100: Directed Reading

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-2

GEOPHYS 110: Introduction to the Foundations of Contemporary Geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and environment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. The course will include a weekend field trip. Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 118Z: Shaping the Future of the Bay Area (CEE 118Z, CEE 218Z, GEOPHYS 218Z)

Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered and may span both Winter and Spring quarters; students are welcome to participate in one or both quarters. Students are expected to interact professionally with government and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. Prerequisite: the Autumn (X) skills course or approval of instructors. For information about the projects and application process, visit http://bay.stanford.edu.
Terms: Spr | Units: 1-5

GEOPHYS 128: MODELING EARTH (GEOPHYS 228)

Most problems in Earth Science are dazzling and beautifully complex. Abstracting from this natural complexity to identify the essential components and mechanisms of a natural system is perhaps the most important, but commonly overlooked, task for developing testable mathematical models for Earth and Environmental Science. This course focuses on conceptual model development, rather than addressing the variety of formal mathematical techniques available for the analytical analysis or numerical simulation of a model. Recommended Prerequisites: CME 100 or MATH 51 (or equivalent)
Terms: Spr | Units: 3-4
Instructors: Suckale, J. (PI)

GEOPHYS 162: Laboratory Characterization of Properties of Rocks and Geomaterials (CEE 192, GEOPHYS 259)

Lectures and laboratory experiments. Properties of rocks and geomaterials and how they relate to chemo-mechanical processes in crustal settings, reservoirs, and man-made materials. Focus is on properties such as porosity, permeability, acoustic wave velocity, and electrical resistivity. Students may investigate a scientific problem to support their own research (4 units). Prerequisites: Physics 41 (or equivalent) and CME 100.
Terms: Spr | Units: 3-4
Instructors: Vanorio, T. (PI)

GEOPHYS 165: Ice Penetrating Radar (GEOPHYS 230)

The purpose of this course is to provide an introduction to the physics, systems, processing, and analysis of ice penetrating radar, preparing students to use it as a quantitative research tool. Target students are graduates or advanced undergraduates in geophysics, glaciology, planetary science, or engineering with an interest in the use of radar to study glaciers, ice sheets, or icy planets.nPrerequisite: EE 142 or EE 242 or PHYS 43 or instructor consent.
Terms: Spr | Units: 1-3

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints