## GEOPHYS 100: Directed Reading

(Staff)

Terms: Aut, Win, Spr, Sum
| Units: 1-2

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
...
more instructors for GEOPHYS 100 »

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
;
Harris, J. (PI)
;
Klemperer, S. (PI)
;
Knight, R. (PI)
;
Mavko, G. (PI)
;
Schroeder, D. (PI)
;
Segall, P. (PI)
;
Sleep, N. (PI)
;
Suckale, J. (PI)
;
Vanorio, T. (PI)
;
Zebker, H. (PI)
;
Zoback, M. (PI)

## GEOPHYS 112: Exploring Geosciences with MATLAB (ENERGY 112)

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.

Terms: Aut
| Units: 1-3

Instructors:
Mukerji, T. (PI)
;
Daza, J. (TA)

## GEOPHYS 118X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 118X, ESS 218X, GEOLSCI 118X, GEOLSCI 218X, GEOPHYS 218X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to
more »

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit
http://bay.stanford.edu.

Terms: Aut
| Units: 3-5

## GEOPHYS 122: Planetary Systems: Dynamics and Origins (GEOLSCI 122, GEOLSCI 222)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics. Students need instructor approval to take the course for 2 or 4 units.

Terms: Aut
| Units: 2-4

Instructors:
Lissauer, J. (PI)
;
Marley, M. (PI)

## GEOPHYS 182: Reflection Seismology (GEOPHYS 222)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.

Terms: Aut
| Units: 3
| UG Reqs: GER: DB-NatSci

Instructors:
Klemperer, S. (PI)

## GEOPHYS 188: Basic Earth Imaging (GEOPHYS 210)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See
http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. *The Geophys180 cross-listing is considered an advanced undergraduate course.

Terms: Aut
| Units: 2-3

Instructors:
Biondi, B. (PI)

## GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.

Terms: Aut, Win, Spr, Sum
| Units: 1-10
| Repeatable for credit

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
...
more instructors for GEOPHYS 196 »

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
;
Harris, J. (PI)
;
Klemperer, S. (PI)
;
Knight, R. (PI)
;
Mavko, G. (PI)
;
Pidlisecky, A. (PI)
;
Segall, P. (PI)
;
Sleep, N. (PI)
;
Suckale, J. (PI)
;
Vanorio, T. (PI)
;
Zebker, H. (PI)
;
Zoback, M. (PI)

## GEOPHYS 197: Senior Thesis in Geophysics

For seniors writing a thesis based on Geophysics research in 196 or as a summer research fellow. Seniors defend the results of their research at a public oral presentation.

Terms: Aut, Win, Spr, Sum
| Units: 3-5

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
...
more instructors for GEOPHYS 197 »

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
;
Harris, J. (PI)
;
Klemperer, S. (PI)
;
Knight, R. (PI)
;
Mavko, G. (PI)
;
Schroeder, D. (PI)
;
Segall, P. (PI)
;
Sleep, N. (PI)
;
Suckale, J. (PI)
;
Vanorio, T. (PI)
;
Zebker, H. (PI)
;
Zoback, M. (PI)

## GEOPHYS 198: Honors Program

Experimental, observational, or theoretical honors project and thesis in geophysics under supervision of a faculty member. Students who elect to do an honors thesis should begin planning it no later than Winter Quarter of the junior year. Prerequisites: department approval. Seniors defend the results of their research at a public oral presentation.

Terms: Aut, Win, Spr, Sum
| Units: 1-3
| Repeatable for credit

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
...
more instructors for GEOPHYS 198 »

Instructors:
Beroza, G. (PI)
;
Biondi, B. (PI)
;
Dunham, E. (PI)
;
Dvorkin, J. (PI)
;
Harris, J. (PI)
;
Klemperer, S. (PI)
;
Knight, R. (PI)
;
Mavko, G. (PI)
;
Schroeder, D. (PI)
;
Segall, P. (PI)
;
Sleep, N. (PI)
;
Suckale, J. (PI)
;
Vanorio, T. (PI)
;
Zebker, H. (PI)
;
Zoback, M. (PI)