## ENERGY 112: Exploring Geosciences with MATLAB (GEOPHYS 112)

How to use MATLAB as a tool for research and technical computing, including 2-D and 3-D visualization features, numerical capabilities, and toolboxes. Practical skills in areas such as data analysis, regressions, optimization, spectral analysis, differential equations, image analysis, computational statistics, and Monte Carlo simulations. Emphasis is on scientific and engineering applications. Offered every year, autumn quarter.

Terms: Aut
| Units: 1-3

Instructors:
Mukerji, T. (PI)
;
Daza, J. (TA)

## ENERGY 120: Fundamentals of Petroleum Engineering (ENGR 120)

Lectures, problems, field trip. Engineering topics in petroleum recovery; origin, discovery, and development of oil and gas. Chemical, physical, and thermodynamic properties of oil and natural gas. Material balance equations and reserve estimates using volumetric calculations. Gas laws. Single phase and multiphase flow through porous media.

Terms: Aut
| Units: 3
| UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

## ENERGY 153: Carbon Capture and Sequestration (ENERGY 253)

CO2 separation from syngas and flue gas for gasification and combustion processes. Transportation of CO2 in pipelines and sequestration in deep underground geological formations. Pipeline specifications, monitoring, safety engineering, and costs for long distance transport of CO2. Comparison of options for geological sequestration in oil and gas reservoirs, deep unmineable coal beds, and saline aquifers. Life cycle analysis.

Terms: Aut
| Units: 3-4

Instructors:
Benson, S. (PI)
;
Wen, G. (TA)

## ENERGY 155: Undergraduate Report on Energy Industry Training

On-the-job practical training under the guidance of on-site supervisors. Required report detailing work activities, problems, assignments and key results. Prerequisite: written consent of instructor.

Terms: Aut, Win, Spr, Sum
| Units: 1-3
| Repeatable for credit

Instructors:
Aziz, K. (PI)
;
Battiato, I. (PI)
;
Benson, S. (PI)
...
more instructors for ENERGY 155 »

Instructors:
Aziz, K. (PI)
;
Battiato, I. (PI)
;
Benson, S. (PI)
;
Brandt, A. (PI)
;
Caers, J. (PI)
;
Durlofsky, L. (PI)
;
Gerritsen, M. (PI)
;
Horne, R. (PI)
;
Kovscek, A. (PI)
;
Mukerji, T. (PI)
;
Tartakovsky, D. (PI)
;
Tchelepi, H. (PI)

## ENERGY 171: Energy Infrastructure, Technology and Economics (ENERGY 271)

Oil and gas represents more than 50% of global primary energy. In delivering energy at scale, the industry has developed global infrastructure with supporting technology that gives it enormous advantages in energy markets; this course explores how the oil and gas industry operates. From the perspective of these established systems and technologies, we will look at the complexity of energy systems, and will consider how installed infrastructure enables technology development and deployment, impacts energy supply, and how existing infrastructure and capital invested in fossil energy impacts renewable energy development. Prerequisites:
Energy 101 and 102 or permission of instructor.

Terms: Aut
| Units: 3

Instructors:
Sears, R. (PI)
;
Rutherford, J. (TA)

## ENERGY 192: Undergraduate Teaching Experience

Leading field trips, preparing lecture notes, quizzes under supervision of the instructor. May be repeated for credit.

Terms: Aut, Win, Spr, Sum
| Units: 1-3
| Repeatable for credit

Instructors:
Battiato, I. (PI)
;
Benson, S. (PI)
;
Brandt, A. (PI)
...
more instructors for ENERGY 192 »

Instructors:
Battiato, I. (PI)
;
Benson, S. (PI)
;
Brandt, A. (PI)
;
Durlofsky, L. (PI)
;
Gerritsen, M. (PI)
;
Horne, R. (PI)
;
Kovscek, A. (PI)
;
Mukerji, T. (PI)
;
Tartakovsky, D. (PI)
;
Tchelepi, H. (PI)

## ENERGY 193: Undergraduate Research Problems

Original and guided research problems with comprehensive report. May be repeated for credit.

Terms: Aut, Win, Spr, Sum
| Units: 1-3
| Repeatable for credit

Instructors:
Aziz, K. (PI)
;
Battiato, I. (PI)
;
Benson, S. (PI)
...
more instructors for ENERGY 193 »

Instructors:
Aziz, K. (PI)
;
Battiato, I. (PI)
;
Benson, S. (PI)
;
Brandt, A. (PI)
;
Caers, J. (PI)
;
Durlofsky, L. (PI)
;
Gerritsen, M. (PI)
;
Horne, R. (PI)
;
Kovscek, A. (PI)
;
Mukerji, T. (PI)
;
Tartakovsky, D. (PI)
;
Tchelepi, H. (PI)

## ENERGY 203: Stanford Energy Ventures

Solving the global energy challenge will require the creation and successful scale-up of hundreds of new ventures. This project-based course provides a launchpad for the development and creation of transformational energy ventures and innovation models. Interdisciplinary teams will research, analyze, and develop detailed launch plans for high-impact opportunities in the context of the new energy venture development framework offered in this course.

Terms: Aut, Win, Spr
| Units: 1-3

## ENERGY 224: Advanced Reservoir Simulation

Topics include modeling of complex wells, coupling of surface facilities, compositional modeling, dual porosity models, treatment of full tensor permeability and grid nonorthogonality, local grid refinement, higher order methods, streamline simulation, upscaling, algebraic multigrid solvers, unstructured grid solvers, history matching, other selected topics. Prerequisite: 223 or consent of instructor. May be repeated for credit.

Terms: Aut
| Units: 3
| Repeatable for credit

Filter Results: