2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 10 of 88 results for: CS

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 22A: The Social & Economic Impact of Artificial Intelligence (INTLPOL 200)

(Formerly IPS 200.) Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems respect our ethical principles when they make decisions at speeds and for rationales that exceed our ability to comprehend? What, if any, legal rights and responsibilities should we grant them? And should we regard them merely as sophisticated tools or as a newly emerging form of life? The goal of CS22 is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Kaplan, J. (PI)

CS 43: Functional Programming Abstractions

This course explores the philosophy and fundamentals of functional programming, with a focus on the Haskell and Clojure programming languages. Topics include: functional abstractions (function composition, higher order functions), immutable data structures, type systems, Lisp macros, homoiconicity, and monads. The course interweaves a theoretical description of fundamentals with hands-on projects in Haskell and Clojure. Prerequisites: CS107 (or equivalent experience)
Terms: Win | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Cain, J. (PI)

CS 51: CS + Social Good Studio: Designing Social Impact Projects

Introduces students to the tech + social good space. Students work in small teams to develop high-impact projects around problem domains provided by partner organizations, under the guidance and support of design/technical coaches from industry and non-profit domain experts. Main class components are workshops, community discussions, guest speakers and mentorship. Studio provides an outlet for students to create social change through CS while engaging in the full product development cycle on real-world projects. The class culminates in a showcase where students share their project ideas and Minimum Viable Product prototypes with stakeholders and the public. Prerequisite: CS 147, equivalent experience, or consent of instructors.
Terms: Win | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Cain, J. (PI)

CS 56N: Great Discoveries and Inventions in Computing

This seminar will explore some of both the great discoveries that underlie computer science and the inventions that have produced the remarkable advances in computing technology. Key questions we will explore include: What is computable? How can information be securely communicated? How do computers fundamentally work? What makes computers fast? Our exploration will look both at the principles behind the discoveries and inventions, as well as the history and the people involved in those events. Some exposure to programming will be helpful, but it not strictly necessary.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Hennessy, J. (PI)

CS 83: Playback Theater For Research

Playback combines elements of theater, community work and storytelling. In a playback show, a group of actors and musicians create an improvised performance based on the audience's personal stories. A playback show brings about a powerful listening and sharing experience. During the course, we will tell, listen, play together, and train in playback techniques. We will write diaries to process our experience in the context of education and research. The course is aimed to strengthen listening abilities, creativity and the collaborative spirit, all integral parts of doing great science. In playback, as in research, we are always moving together, from the known, to the unknown, and back. There is limited enrollment for this class. Application is required.
Terms: Win | Units: 3 | UG Reqs: WAY-CE | Grading: Letter or Credit/No Credit
Instructors: Reingold, O. (PI)

CS 102: Big Data - Tools and Techniques

Aimed at non-CS undergraduate and graduate students who want to learn the basics of big data tools and techniques and apply that knowledge in their areas of study. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of collecting and analyzing large volumes of data. At the same time, it is surprisingly easy to make errors or come to false conclusions from data analysis alone. This course provides a broad and practical introduction to big data: data analysis techniques including databases, data mining, and machine learning; data analysis tools including spreadsheets, relational databases and SQL, Python, and R; data visualization techniques and tools; pitfalls in data collection and analysis. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.
Terms: Win | Units: 3-4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Widom, J. (PI)

CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin more »
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with CS103.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

CS 106A: Programming Methodology (ENGR 70A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Emphasis is on good programming style and the built-in facilities of respective languages. No prior programming experience required. Summer quarter enrollment is limited. Alternative versions of CS106A may be available which cover most of the same material but in different programming languages.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

CS 106AP: Programming Methodology in Python

Introduction to the engineering of computer applications in Python, emphasizing modern software engineering principles: decomposition, abstraction, testing and good programming style. This course covers most of the same material as the other versions of CS106A, but using the Python programming language which is popular for general engineering and web development. Required readings will all be available for free on the web. Students are encouraged to bring a laptop to lecture to do the live exercises which are integrated with lecture. No prior programming experience required. To enroll in this class, enroll in CS 106A Section 3.
Terms: Win, Spr | Units: 3-5 | Grading: Letter or Credit/No Credit
Instructors: Parlante, N. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints