2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 96 results for: CS ; Currently searching winter courses. You can expand your search to include all quarters

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1
Instructors: Zelenski, J. (PI)

CS 22A: The Social & Economic Impact of Artificial Intelligence (INTLPOL 200)

Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems are free of algorithmic bias and respect human ethical principles? What role will they play in our system of justice and the practice of law? How will they be used or abused in democratic societies and autocratic regimes? Will they alter the geopolitical balance of power, and change the nature of warfare? The goal of CS22a is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: Win | Units: 1
Instructors: Kaplan, J. (PI)

CS 41: Hap.py Code: The Python Programming Language

The fundamentals and contemporary usage of the Python programming language. Primary focus is on developing best practices in writing Python and exploring the extensible and unique parts of the Python language. Topics include: Pythonic conventions, data structures such as list comprehensions, anonymous functions, iterables, and powerful built-ins (e.g. map, filter, zip). We will also focus on data analysis tools including NumPy, Pandas, Matplotlib, and Scikit-learn for their application in machine learning. Prerequisite: CS106B, CS106X, or equivalent. Application required.
Terms: Win | Units: 2
Instructors: Cain, J. (PI)

CS 51: CS + Social Good Studio: Designing Social Impact Projects

Get real-world experience researching and developing your own social impact project! Students work in small teams to develop high-impact projects around problem domains provided by partner organizations, under the guidance and support of design/technical coaches from industry and non-profit domain experts. Main class components are workshops, community discussions, guest speakers and mentorship. Studio provides an outlet for students to create social change through CS while engaging in the full product development cycle on real-world projects. The class culminates in a showcase where students share their project ideas and Minimum Viable Product prototypes with stakeholders and the public. Prerequisite: CS 147, equivalent experience, or consent of instructors. Application required; please see cs51.stanford.edu for more information.
Terms: Win | Units: 2

CS 80Q: Race and Gender in Silicon Valley (AFRICAAM 80Q)

Join us as we go behind the scenes of some of the big headlines about trouble in Silicon Valley. We'll start with the basic questions like who decides who gets to see themselves as "a computer person," and how do early childhood and educational experiences shape our perceptions of our relationship to technology? Then we'll see how those questions are fundamental to a wide variety of recent events from #metoo in tech companies, to the ways the under-representation of women and people of color in tech companies impacts the kinds of products that Silicon Valley brings to market. We'll see how data and the coming age of AI raise the stakes on these questions of identity and technology. How can we ensure that AI technology will help reduce bias in human decision-making in areas from marketing to criminal justice, rather than amplify it?
Terms: Aut, Win | Units: 3 | UG Reqs: WAY-ED
Instructors: Lee, C. (PI)

CS 83: Playback Theater

Playback combines elements of theater, community work and storytelling. In a playback show, a group of actors and musicians create an improvised performance based on the audience's personal stories. A playback show brings about a powerful listening and sharing experience. During the course, we will tell, listen, play together, and train in playback techniques. We will write diaries to process our experience in the context of education and research. The course is aimed to strengthen listening abilities, creativity and the collaborative spirit, all integral parts of doing great science. In playback, as in research, we are always moving together, from the known, to the unknown, and back. There is limited enrollment for this class. Application is required.
Terms: Win | Units: 3 | UG Reqs: WAY-CE
Instructors: Reingold, O. (PI)

CS 91SI: Digital Canvas: An Introduction to UI/UX Design

Become familiar with prototype-design tools like Sketch and Marvel while also learning important design concepts in a low-stress environment. Focus is on the application of UI/UX design concepts to actual user interfaces: the creation of wireframes, high-fidelity mockups, and clickable prototypes. We will look at what makes a good or bad user interface, effective design techniques, and how to employ these techniques using Sketch and Marvel to make realistic prototypes. This course is ideal for anyone with little to no visual design experience who would like to build their skill set in UI/UX for app or web design. Also ideal for anyone with experience in front or back-end web development or human-computer interaction that would want to sharpen their visual design and analysis skills for UI/UX.
Terms: Aut, Win | Units: 2
Instructors: Cain, J. (PI)

CS 100A: Problem-solving Lab for CS106A

Additional problem solving practice for the introductory CS course CS 106A. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106A required.
Terms: Aut, Win, Spr | Units: 1

CS 100B: Problem-solving Lab for CS106B

Additional problem solving practice for the introductory CS course CS106B. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106B required.
Terms: Aut, Win, Spr | Units: 1

CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin more »
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with CS103.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints