2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 10 of 90 results for: CS ; Currently searching winter courses. You can expand your search to include all quarters

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1
Instructors: Zelenski, J. (PI)

CS 47: Cross-Platform Mobile Development

The fundamentals of cross-platform mobile application development using the React Native framework (RN). Primary focus on enabling students to build apps for both iOS and Android using RN. Students will explore the unique aspects that made RN a primary tool for mobile development within Facebook, Instagram, Walmart, Tesla, and UberEats. Skills developed over the course will be consolidated by the completion of a final project. No required prerequisites. Website: web.stanford.edu/class/cs47/. To enroll in the class, please fill the following application: https://forms.gle/nDnuR3R6N9LozXUdA. The application deadline is January 15th at 6:00 pm.
Terms: Win | Units: 2
Instructors: Landay, J. (PI)

CS 51: CS + Social Good Studio: Designing Social Impact Projects

Get real-world experience researching and developing your own social impact project! Students work in small teams to develop high-impact projects around problem domains provided by partner organizations, under the guidance and support of design/technical coaches from industry and non-profit domain experts. Main class components are workshops, community discussions, guest speakers and mentorship. Studio provides an outlet for students to create social change through CS while engaging in the full product development cycle on real-world projects. The class culminates in a showcase where students share their project ideas and Minimum Viable Product prototypes with stakeholders and the public. Application required; please see cs51.stanford.edu for more information.
Terms: Win | Units: 2
Instructors: Cain, J. (PI)

CS 100A: Problem-solving Lab for CS106A

Additional problem solving practice for the introductory CS course CS 106A. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106A required.
Terms: Aut, Win, Spr | Units: 1

CS 100B: Problem-solving Lab for CS106B

Additional problem solving practice for the introductory CS course CS106B. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106B required.
Terms: Aut, Win, Spr | Units: 1

CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin more »
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with CS103.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR

CS 106A: Programming Methodology

Introduction to the engineering of computer applications emphasizing modern software engineering principles: program design, decomposition, encapsulation, abstraction, and testing. Emphasis is on good programming style and the built-in facilities of respective languages. Uses the Python programming language. No prior programming experience required.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 106B: Programming Abstractions

Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees, graphs). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or equivalent.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 106L: Standard C++ Programming Laboratory

Supplemental lab to 106B and 106X. Additional features of standard C++ programming practice. Possible topics include advanced C++ language features, standard libraries, STL containers and algorithms, templates, object memory management, operator overloading, and move semantics. Prerequisite: consent of instructor. Corequisite: CS106B or CS106X.
Terms: Aut, Win, Spr | Units: 1

CS 106S: Coding for Social Good

Survey course on applications of fundamental computer science concepts from CS 106B/X to problems in the social good space (such as health, government, education, and environment). Each week consists of in-class activities designed by student groups, local tech companies, and nonprofits. Introduces students to JavaScript and the basics of web development. Some of the topics we will cover include mental health chatbots, tumor classification with basic machine learning, sentiment analysis of tweets on refugees, and storytelling through virtual reality. Pre/Corequisite: CS106B or CS106X.
Terms: Aut, Win, Spr | Units: 1
Instructors: Cain, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints