2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 10 of 92 results for: CS

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 45N: Computers and Photography: From Capture to Sharing

Preference to freshmen with experience in photography and use of computers. Elements of photography, such as lighting, focus, depth of field, aperture, and composition. How a photographer makes photos available for computer viewing, reliably stores them, organizes them, tags them, searches them, and distributes them online. No programming experience required. Digital SLRs and editing software will be provided to those students who do not wish to use their own.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: WAY-CE | Grading: Letter or Credit/No Credit

CS 49N: Using Bits to Control Atoms

This is a crash course in how to use a stripped-down computer system about the size of a credit card (the rasberry pi computer) to control as many different sensors as we can implement in ten weeks, including LEDs, motion sensors, light controllers, and accelerometers. The ability to fearlessly grab a set of hardware devices, examine the data sheet to see how to use it, and stitch them together using simple code is a secret weapon that software-only people lack, and allows you to build many interesting gadgets. We will start with a "bare metal'' system --- no operating system, no support --- and teach you how to read device data sheets describing sensors and write the minimal code needed to control them (including how to debug when things go wrong, as they always do). This course differs from most in that it is deliberately mostly about what and why rather than how --- our hope is that the things you are able at the end will inspire you to follow the rest of the CS curriculum to understand better how things you've used work. Prerequisites: knowledge of the C programming language. A Linux or Mac laptop that you are comfortable coding on.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Engler, D. (PI)

CS 52: CS + Social Good Studio

Continuation of CS51 (CS + Social Good Studio). Teams enter the quarter having completed and tested a minimal viable product (MVP) with a well-defined target user, and a community partner. Students will learn to apply scalable technical frameworks, methods to measure social impact, tools for deployment, user acquisition techniques and growth/exit strategies. The purpose of the class is to facilitate students to build a sustainable infrastructure around their product idea. CS52 will host mentors, guest speakers and industry experts for various workshops and coaching-sessions. The class culminates in a showcase where students share their projects with stakeholders and the public. Prerequisite: CS 51, or consent of instructor.
Terms: Spr | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Cain, J. (PI)

CS 53: DISCUSSIONS IN TECH FOR GOOD

This course introduces students to applications of technology to social impact through a weekly discussion and speaker series. Invited speakers come from industry, academia, and non-profit organizations. They will share their work in social impact technology, thoughts on issues of ethics in technology, and personal career paths. Topics span a broad variety of social issues -- from education to healthcare to activism -- and help students better understand how to lead careers in using computer science for social good.
Terms: Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 100A: Problem-solving Lab for CS106A

Additional problem solving practice for the introductory CS course CS 106A. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106A required.
Terms: Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 100B: Problem-solving Lab for CS106B

Additional problem solving practice for the introductory CS course CS106B. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106B required.
Terms: Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin more »
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with CS103.
Terms: Aut, Win, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

CS 105: Introduction to Computers

For non-technical majors. What computers are and how they work. Practical experience in programming. Construction of computer programs and basic design techniques. A survey of Internet technology and the basics of computer hardware. Students in technical fields and students looking to acquire programming skills should take 106A or 106X. Students with prior computer science experience at the level of 106 or above require consent of instructor. Prerequisite: minimal math skills.
Terms: Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Young, P. (PI)

CS 106A: Programming Methodology (ENGR 70A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Emphasis is on good programming style and the built-in facilities of respective languages. No prior programming experience required. Summer quarter enrollment is limited. Alternative versions of CS106A may be available which cover most of the same material but in different programming languages.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints